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Figure 1. Hybrid Microgenetic Analysis: (A) The environment and user are instrumented to record creative activity; (B) Time-series data is processed
to generate a codebook representing distinct subsequences of activity; the codebook is visualized as a process chromatogram; (C) The chromatogram is
used to guide qualitative analysis, highlighting periods of unique activity between or within users.

ABSTRACT
Tacit knowledge is a type of knowledge often existing in one’s
subconscious or embodied in muscle memory. Such knowl-
edge is pervasive in creative practices yet remains difficult
to observe or codify. To better understand tacit knowledge,
we introduce a design method that leverages time-series data
(interaction logs, physical sensor, and biosignal data) to isolate
unique actions and behaviors between groups of users. This
method is enacted in Eluent, a tool that distills hundreds of
hours of dense activity data using an activity segmentation
algorithm into a codebook — a set of distinct, characteristic
sequences that comprise an activity. The results are made
visually parsable in a representation we term process chro-
matograms that aid with 1) highlighting distinct periods of
activity in creative sessions, 2) identifying distinct groups of
users, and 3) characterizing periods of activity. We demon-
strate the value of our method through a study of tacit process
within computational notebooks and discuss ways process
chromatograms can act as a knowledge mining technique, an
evaluation metric, and a design-informing visualization.

CCS Concepts
•Human-centered computing → User models; Ethno-
graphic studies; Dendrograms;

Author Keywords
Tacit knowledge; digital ethnography; activity segementation

C&C ’19 June 23–26, 2019, San Diego, CA, USA

© 2019 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-5917-7/19/06.

DOI: https://doi.org/10.1145/3325480.3325498

INTRODUCTION
A creative process, or how one moves, trains, conditions, and
paces the mind and body, allows for practitioners to overcome
difficulties and sustain practice — essential elements to de-
veloping skill, building efficacy, and fostering creativity [21].
Process is a critical component of any creative practice yet
remains a tacit skill1 especially within STEM fields that pri-
oritize theoretical knowledge. Creative technologies have the
potential to shape this creative process, supporting the avail-
able skills of the practitioner and mediating a creative practice.

Several techniques for studying tacit knowledge are impacted
by two major factors: (1) the difficulty in vocalizing or ob-
serving tacit knowledge, and (2) the expense of collecting,
processing, and analyzing ethnographic data. In this work,
we introduce a design method called Hybrid Microgenetic
Analysis (HMA) which computationally compiles a descriptor
of tacit activity called a process chromatogram that highlights
and identifies unique users or periods of activity to seed ethno-
graphic and design inquiry. The method is not fully automated
and instead acts as an aid for designers analyzing sensor data.
We are especially interested in understanding and document-
ing a level of detail that occurs over a few seconds (micro)
within a creative practice, such as the pressure exerted by a
calligrapher’s pen, the "emotional rollercoaster" experienced
by programmers, or the routine evolution of a hundred piped
roses by a cake decorator. This detail is provided by sensor
(e.g., biosensors, accelerometers) and activity logs in the cre-
ative workspace. Following a microgenetic design, data is
captured for multiple practitioners (or the same practitioner,
many times) undergoing the same task to observe differences
in process or the evolution of skill.

1Tacit knowledge is a form of procedural knowledge of how to per-
form activities [18]. Polanyi [34] described tacit knowledge as "things
that we know but cannot tell" often existing in the subconscious.
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To synthesize the thousands of hours of collected data, we
employ a codebook approach which takes the full corpus of
activity data and distills a codebook of k codewords that rep-
resent distinctive actions or behaviors. This codebook is then
used to discretize time series data and characterize periods
of activity. Codebook approaches have shown promising re-
sults in identifying characteristic features of emotion, motion,
and cognition activity from electrooculography, accelerometer,
and biosensors [24, 40]. We take the additional step of visu-
alizing codebooks as process chromatograms. Similar to the
role of liquid chromatography in identifying components of a
substance, process chromatograms help identify components
of an activity and make patterns more salient. These patterns
are used to guide researchers in identifying individuals and
periods of activity to compare. For instance, a codeword repre-
senting an absence of motion (from accelerometer data) can be
used to characterize the difference in action versus thinking be-
tween novice and expert practitioners. We enacted this design
method in Eluent2, a tool that processes sensor data, runs an ac-
tivity segmentation algorithm to produce codebooks and chro-
matograms, and provides a qualitative analysis interface for
navigating sensor activity data against traditional ethnographic
data (e.g., interviews, questionnaires, field notes)(Figure 1).

In this paper, we first position our design method in the space
of research methodologies that study tacit process. Though
HMA can be applied broadly for understanding tacit processes
across domains, this paper instantiates these ideas in the con-
text of a case study examining programming style and work-
flow within computational notebooks3. We showcase the role
of a process chromatogram in providing additional ethno-
graphic description in a microgenetic analysis of 17 partici-
pants carrying out a programming task, and 2) the ability to
characterize emotion and interaction behaviors. We conclude
with a discussion of ethical issues arising from hybrid mi-
crogenetic analysis and the role process chromatograms have
as a knowledge mining and evaluation technique, a digital
pedagogical tool, and as a design-informing visualization.

RELATED WORK
In this section, we review studies of tacit process, focusing
on research methods and systems for analyzing, recognizing,
modeling, and visualizing creative activity.

Studying tacit process
Several methods aim to understand and describe tacit process
operate at different levels of granularity from careful observa-
tion of seconds of activity to multi-year longitudinal studies.
Within cognitive science, microgenetic [42] and nanogenetic
methods [28] observe “the moment-by-moment change” over
time within repeated tasks (e.g., photocopying [41], spread-
sheet calculations [22]). These methods aim to track and
qualify the development of skill over time and understand the
“person/environment dyad” [41]. While providing rich quali-
tative insights about learning, microgenetic analysis requires
2In liquid chromatography, the eluent refers to the solvent that breaks
down and transports the substance under analysis.
3Computational notebooks refer to a class of integrated development
environments (IDEs) that facilitate journaling and documentation
while programming.

study environments to be carefully instrumented to isolate task
behaviors, and, even then, require hours of hand coding.

Computational and sensor-supported ethnography [50], or the
use of unobtrusive sensors or other computational methods for
ethnographic inquiry allows for a richer description of activity.
Our work falls within this family of methods, specifically
lensed towards creative practice. In these methods, sensors
are used to “shadow” the user, obtaining difficult to obtain
data from in-person interaction; however, the data offers only
a partial view of a situated perspective that considers social
interactions and cultural histories [33] and is limited by privacy
concerns [7]. Low-cost sensing infrastructure is continuing
to develop [7, 44] to capture richer information about user
interactions, including unique perspectives from non-human
actors [14, 5]. Processing and incorporating sensor data into
analysis continues to remain a challenge especially with the
range of data encoding formats and volume of information.

Tacitness is a property of the knower: it is easily articulated
by one person but may be very difficult to externalize by
another [45]. Design ethnographic methods like contextual in-
quiry [19] rely heavily on the knower’s ability to articulate and
the observer’s ability to discern what to examine. In contrast
to these approaches, we used sensed and captured information
to examine activity that would be otherwise imperceivable.
Within creative practices, ethnographic methods seek to fore-
ground difficult to observe activity, leveraging expert learners
to experience and document mental models [49], or altering
the saliency of stimuli (e.g., blindfolding to highlight haptic
experiences [17]). Methods have been proposed for synthe-
sizing observed creative activity with cognitive models, such
as enactivism [9], to formulate a continuous representation
of activity. Within programming (our case study domain),
activity has been observed from interaction logs [31], version
control histories [38], and biosensors [30] in practices such
as entry-level programming [23] and debugging [25]. Our
proposed design method is a form of microgenetic analysis
that incorporates a diverse set of time series data to capture
a more holistic view of process while employing traditional
ethnographic data to condition our interpretation of computa-
tional data. Using unsupervised methods, the data is coded
but unlabeled, sitting on the edge of ambiguity yet providing
quantitative hints to guide a qualitative analysis of data.

Programming styles
Process emerges from a variety of contributing factors. En-
vironmental factors shape the ease in which materials and
tools can be accessed. The proliferation of search interfaces
for programming snippets (e.g., StackOverflow) encourage
practitioners to develop foraging behaviors [4]. Social prac-
tices around research have influenced key behaviors found in
computational notebooks: tracking provenance, reusing code,
enabling replication, and presenting results [36]. Discussions
surrounding epistemological pluralism have recognized that
a spectrum of approaches to programming exists, the most
prominent of which contrasts the hard approach, character-
ized by logical, plan-oriented actions, with a soft approach,
distinguished by a desire to work closely with the objects
rather than abstraction [46]. This distinction has influenced
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emergent practices such as block-based flow programming
(e.g. Scratch [35]), code bending [2], and embodied tacit skills
like code smelling [11, 36]. These styles align with a larger
conversation around making, extending beyond programming
to other creative domains. Under the hylomorphic model, prac-
titioners impose forms internal to the mind upon a material
world; in contrast, under the morphogenetic model, a practi-
tioner “joins forces” with active materials to react, synthesize,
and anticipate new forms [20]. This morphogenetic process
is the often unconscious reality of many programmers’ natu-
ral practice, such as in the act of debugging. HMA acts as a
method to make more salient how process emerges in practice.

Systems and models of creative activity
A streamlined system architecture is needed to coordinate,
synchronize, and organize diverse sensing implements. With
growing ubiquitous IoT sensing technologies, Wilkinson et
al. demonstrated the value of a common time window format
for sensors in a cooking production set [48]. Notably, the
architecture was not geared towards activity recognition, but
instead held a model of usage that could be used by editors to
suggest where the focus of production should be. Similarly,
our approach does not aim to classify activity but provide
information about patterns and trends to inform design inquiry.

Several temporal data mining techniques exist for extract-
ing patterns of actions and behaviors [12]. Markov chains
and n-grams were used to construct probabilistic models of
activity [50] at different granularities of patterns, segments, se-
quences, and events [26]. A clustering approach identified sim-
ilar styles in a corpus of student programming submissions [6].
Our approach leverages codebooks, a technique that represents
activity as a distribution of characteristic subsequences [40],
often used to detect good features for machine learning rou-
tines [13] and making sense of difficult-to-interpret data, like
electrooculographs [24].

Visualizing multivariate time-series data has a long his-
tory within the data visualization communities [1]. Pattern-
highlighting techniques include brush and linking across data
sources [26], sketch-based interactions for exploring time-
series data [27], and patination techniques usage patterns ren-
dered as heatmaps [31]. Most similar to our approach is Mo-
tionExplorer [3], an interactive dendrogram visualization tool
applied to human motion data that generates cluster glyphs
to represent both higher-level behaviors and discretize time-
series data. We build on this approach leveraging codebooks
extracted from dendrograms to discretize sensor streams into
visually-parsable descriptors of activity.

METHOD AND TOOL DESIGN
We describe a 3-stage method termed Hybrid Microgenetic
Analysis (HMA) for studying and documenting process (Fig-
ure 1). The method, operationalized in Eluent, involves 1)
configuring the environment to sense relevant activity and col-
lect data from a microgenetic study, 2) distilling a codebook
for producing a visual descriptor of activity, and 3) using the
descriptor to guide a qualitative analysis of process.4 The
4Eluent has been made open-source and available here: https://
github.com/Hybrid-Ecologies/eluent.

method design is motivated from Polanyi’s [34] definition of
tacit knowledge: tacit knowledge is a relationship between
the proximal, referring to sensations and perceptions of the
human body, in response to the distal, or the object in focus.
Within crafting theory, this relationship guides the maker in
the wayfaring process [39], leveraging the responses from
the material to inform future actions and intentions. Under
this definition, understanding tacit process relies heavily on
information received from a practitioner’s sensory system, as
well as the objects in focus within the environment.

Sensing and Data Collection
For creative practices, sensing should capture three types of
information: 1) information about the body and the activation
of sensory receptors (proximal); 2) information about the en-
vironment (distal); and 3) information of the object in focus.
Careful consideration needs to be taken in sensor selection
and placement to reduce observer effects and not influence
practitioners’ natural behavior. To capture this type of infor-
mation for our case study, we created a work environment
composed of a PC with a 19" monitor running a Jupyter5 Note-
book, mouse and keyboard, and scratch paper (Figure 1A).
The following data collection mechanisms were introduced:

• Physical Body: Biosignals, such as electrodermal activity
(EDA) and heart rate (HR) are recorded using an Empatica
E4 Wristband6. The wristband has been used in emotion and
sentiment analysis [29] and is capable of logging biosignal
for realtime or post-hoc analysis. We used convex optimiza-
tion [16] to extract the EDA phasic component (short-term
physiological responses to event stimulus).
• Environment: The open-source Jupyter package provides

a method of tracking and detecting higher-order program-
ming actions. We created a custom Jupyter Notebook exten-
sion that logs user actions including code, key, and mouse
events. A screen capture documents interactions with exter-
nal resources and webpages. An iPad records video of any
off-screen activities such as writing on paper.
• Attention: After a recording a creative session, partic-

ipants reviewed the captured video and reflected on their
thought process and emotions in a retrospective think aloud;
this technique has been shown to be less disruptive and
offers similar information as concurrent think aloud [47].

In our case study, this setup was rated 5.3± 1.2 on a 7-pt
Likert as eliciting natural coding behaviors. Although par-
ticipants were aware that the iPad was only capturing desk
activity, they reported more pronounced observer effects. Each
data collection mechanism was configured to annotate each
data point with a real-time clock (RTC) value or with a start
time and sampling frequency. This common format mitigated
major issues with synchronization (starting sensors/sampling)
and failure (a malfunctioning sensing unit) while providing
avenues for extendability (incorporating new sensors). For
each session, acquired sensor data was stored as a multivariate
time-series (MTS) matrix. Non-uniformly sampled features
(e.g., Jupyter notebook events) were interpolated to match the
sampling frequency of synchronous data.
5http://jupyter.org/
6https://www.empatica.com/en-eu/research/e4/
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Figure 2. The activity segmentation routine. (A) Raw activity data is cleaned, aligned, and compiled into a multivariate time series (MTS matrix).
(B) N subsequences of length L are collected from the MTS matrix and are sampled using greedy M-center clustering to identify M � N maximally
distinct samples. (C) The distance between each pair of samples is computed using DTW and used to construct a dendrogram (full-linkage hiearchical
clustering). (D) The resulting dendrogram is pruned to extract a codebook of k codewords.

Codebook Activity Segmentation Algorithm
To compare and contrast behavior across different practition-
ers, a host of computational multivariate time-series analy-
ses techniques can be used to identify larger-order behaviors
and actions [12]. We developed an activity segmentation al-
gorithm depicted in Figure 2 that leverages a codebook ap-
proach for discretizing time-series datasets. Our algorithm
is adapted from Oates et al. [32], which identifies distinc-
tive subsequences, or codewords, of size L between sets of
multivariate time-series data. By introducing a greedy sam-
pling routine, our adaptation is computationally tractable on
large datasets (23K data points in 150 s on consumer systems
[8GB RAM]). The algorithm requires a user-specified value
for k, the number of words to extract (a data-dependent value),
which then carries out three distinct steps: (1) distilling the
full MTS matrix into a smaller set of characteristic sequences,
(2) extracting k codewords from the characteristic set using
hierarchical clustering, and (3) applying the resulting code-
book to the original MTS matrix. By assigning each codeword
a distinctive color, the final application steps transforms the
MTS matrix into a process chromatogram (Figure 3).

Distilling Subsequences
The distillation step aims to reduce the size of the MTS
dataset (on the order of gigabytes) before the computationally-
expensive codeword extraction step. After cleaning, time-
aligning, and normalizing the full MTS matrix, the matrix is
partitioned into windows of size L for a total of N windows.

Data cleaning and alignment. For each feature in the MTS
matrix, outliers exceeding the 99th percentile are clamped in
value. Multivariate subsequences of length L are then extracted
using a moving window with 50% overlap. The length L is
chosen based on the sampling frequency of the data and the
temporal range of activity. For our case study, windows cor-
responding to 3-5s of activity were chosen. Smaller windows
(less than 2s), encroaching on nanogenetic analysis, suffered
from stability issues during hierarchical clustering. Windows
with missing data points (from malfunctioning sensing unit-
s/synchronization) are culled.

Comparing sequences. Since the dataset is in non-euclidean
space, we utilize a Dynamic Time Warping (DTW) implemen-

tation from the Python tslearn library to compare sequences.
As a distance metric, DTW is commonly applied to time se-
ries data due to its robustness to phase shifts and dilations in
time. In multivariate settings, the DTW distance can either be
computed by jointly measuring distance in multi-dimensional
feature space or by summing univariate DTW distances across
each dimension—we employ the former approach to reflect
the tight temporal coupling of our features (e.g. the X/Y/Z
components in accelerometer data should not be temporally
decoupled). Each L-window is independently z-normalized
before computing the DTW distance, which preserves local
shape and improves robustness to outlier values.

Sampling the Window Corpus. The corpus of N subsequences
is sampled using an adaptive greedy centers algorithm (DTW
distance metric), yielding a sampled set of M� N sequences.
This method is preferable to random sampling because it pro-
duces maximally distinct samples—random sampling is likely
to miss rare but distinctive subsequences. At step i of the
greedy-centers algorithm, the i+1-th center is assigned to the
data point with the maximum DTW distance from the i-th
center. As opposed to choosing the number of clusters (M)
in advance, the algorithm is adaptive to the dataset using a
culling routine to terminate sampling: when a new center is
identified, all subsequences that are below a cull threshold ε in
distance to the i-th center are removed until all subsequences
have been exhausted. We adjust the cull threshold to yield
roughly M = 1000 centers.

Extracting Codewords
From the resulting sample of M subsequences, a set of char-
acteristic sequences, or codewords, are extracted representing
unique patterns of behaviors observed in the data. The num-
ber of codewords is left as a hyperparameter k. To extract
codewords, we use agglomerative hierarchical clustering, an
expensive operation that is expensive to run on the full set of
N subsequences (O(n2) time, O(n2) memory [10]), hence the
need for the previous greedy sampling routine. In agglom-
erative clustering, clusters are constructed from the bottom
up, merging the closest two clusters at every step. We use
a complete-linkage (i.e. farthest neighbor) clustering formu-
lation, where the similarity of two clusters is defined as the
distance between its most distant members.
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assigning the closest codeword to each window. Each user’s activity is clustered (by codeword frequency) to identify Group A and Group B; c) statistics
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Hierarchical clustering has a visual representation called a den-
drogram, a tree diagram that offers the advantage of caching
expensive clustering computation in its structure. This al-
lows the number of codewords k to be chosen a posteriori
(Figure 3A). Clusters are collected into sets by pruning the
dendrogram at the k-th level and collecting the leaves of each
respective branch. Each codeword is computed by finding the
clustroid (DTW distance metric). The final codewords are
then collected in a set to form a codebook.

Applying Codebooks
Lastly, windows from the original user activity MTS matrix
are assigned to the most similar codeword from the resulting
codebook (DTW distance metric). By assigning each code-
word a distinctive color, the original MTS matrix results in a
visualization we term a process chromatogram (Figure 3B).
Process chromatograms are stored as Timed Text Tracks (We-
bVTT), or caption files, for easy integration with web media.

Visual Tuning. Raw chromatograms tend to suffer from band-
ing effects, characterized by rapid codeswitches which varies
greatly between datasets. Banding undermines visual inter-
pretability but can be alleviated with smoothing (Figure 3B).
For window smoothing, we constructed a T × k soft assign-
ment matrix for each user, where entry (i, j) contains the DTW
distance of window i (in the original user MTS) to codeword j.
For a kernel of size W , the window is reassigned to the code-
word j with the minimum sum of distances across windows.
We use the average number of codeswitches per user ∆ to
evaluate visual interpretability, targeting a ∆′ (post-smoothing)
that maintains fidelity to the data (≈ 100 codeswitches). To
improve visual readability, the colormap f maps the most
salient (i.e. brightest) colors to codewords with the shortest

duration; this allows for greater acuity of shorter codewords
in the denser regions of the chromatogram.

Characterization. For each user, we extracted characteristics
from the final process chromatogram (Figure 3C), including:

1. Frequency Distribution: the frequency of each codeword
over a session.

2. Bandwidth Distribution: the distribution of codeword band-
width across a session. A band is defined as a sequence of
L-windows all assigned to the same codeword. The band-
width is the length of a band.

3. Transition Probability Distribution: the transition probabil-
ity from codeword i to j represented as a stochastic matrix.

User Segmentation. By comparing these characteristics be-
tween users or groups, we can identify which codewords char-
acterize the unique differences in activity (Figure 3C). Using
these characteristics, we can segment users by clustering them
into groups (complete-linkage clustering, cosine distance met-
ric, feature vector η). In our user segmentation, we used
codeword frequency distribution as our feature vector; the
generated chromatograms are sorted based on the clustering
hierarchy, separated by the two highest-level clusters of users
(denoted Group A and Group B, Figure 3B).

Qualitative Analysis Interface
After generating the chromatogram, the aim of this stage is to
identify the referent of the codeword and ascribe meaning to
the actions and behaviors described by the word. A web-based
qualitative analysis interface (Figure 5) aids with navigating
sensor activity data against traditional ethnographic data (e.g.,
interviews, questionnaires, field notes). The interface is flexi-
ble to a variety of data formats, adapting to traditional work-
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questionairre. All elements are brushed-and-linked and configurable to display raw sensor values or applied computed codebooks.

flows leveraging the file system to extract all files that are
stored in a system folder, organized by participant. Multiple
user-configurable windows render each of these files accord-
ingly, providing a media player for video/audio files, plots for
time series data and chromatograms, tables for questionnaires,
and editable textareas for field notes and transcripts. Data
sources with a time reference are brush-and-linked for easy
reference, allowing users to use any source as a timeline. Us-
ing the chromatogram VTT caption files, we display the active
codeword whenever the playback position is changed. This
allows greater flexibility in leveraging HTML5 video features
such as changing playback speed and looping. Chromatogram
timelines can be used to toggle visible codewords.

CASE STUDY - JUPYTER NOTEBOOKS
To demonstrate the use of Hybrid Microgenetic Analysis, we
conducted a study examining programming style and workflow
within computational notebooks. These notebooks represent a
shift away from traditional programming IDEs that produce
artifacts with little information about a practitioner’s process
towards documentating process and intermediate results dur-
ing the act of programming. We describe a data collection
study and an HMA of emerging practices among users from a
variety of backgrounds that use Jupyter notebooks.

Study Design
Participants. Participants were recruited from department
mailing lists in Design, Engineering, and Computer Science.
To reduce novelty effects, we only recruited participants with
prior Jupyter iPython experience. A total of 17 participants
took part in the study (8 female, 9 male, average age 22 ±
6 years). Participants completed a background questionnaire
on education, programming experience, and affinity to the CS
community. Educational backgrounds included 4 graduates,
12 undergraduates, and 1 full-time software engineer; 75%
reported prior industry experience (avg. 5 years). Participants
came from computer science, electrical engineering, data sci-
ence, cognitive science, or mechanical engineering disciplines.
Participants reported spending an average of 12± 10 hours
programming per week; 70% had taken more than two uni-
versity computer science courses. All but two participants
identified as members of the CS community.

Study Protocol. Each participant was tasked with completing
four programming interview questions sourced from Leet-

Figure 5. Time period spent on each task by participant. Only 214, 512,
and 613 completed all four tasks successfully in the alloted time.

Code7, presented in a single iPython notebook. The four tasks
were chosen to represent a diversity of programming concepts
and difficulties, solvable in any order: T1: a print-loop task,
T2: a dynamic programming task, T3: a stable-sort task, and
T4: a graph-traversal task. While we recognize LeetCode ques-
tions have many constraints, we chose questions that allowed
considerable latitude in problem-solving approaches with the
additional benefit of an established solution framework.

As described in Figure 1A, data was recorded from our Jupyter
plugin, the E4 biosignal wristband, screen capture, and an iPad
video recording the workspace. All data collection mecha-
nisms were presented to the participant. Before each session, 5
minutes of E4 wristband were collected to establish a baseline.
The other data capture mechanisms were initiated once the
participant opened the Jupyter notebook. In pilot studies we
observed participants experiencing anxiety when approaching
the task’s time limit. So as to capture a more natural program-
ming session, we informed participants that a 40-minute time
limit existed; however, they were prompted to stop earlier
when less than 15 minutes remained in the study session. Par-
ticipants then reviewed the screen capture recording of their
session and narrated their programming strategies, emotions
experienced, and process in a retrospective think aloud.

Data
The resulting MTS matrix consisted of 810K data points, 11.8
hours of video, 4 hours of transcripts which covered 5.9 hours
of programming over 17 participants (on average 21 minutes
per session). Due to equipment malfunctions, 2 participants
did not have a screen capture, 1 participant did not have biosig-
nal data, and 1 participant did not have a think-aloud transcript.
7https://leetcode.com/
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Ashley* (512) A

Code Crafting - Small Edits/Cell Switching/Commenting Cleaning & CommentingFinished

Wendy (813) B

Debra* (411) B

Cursor Reading Reflexive Debugging (Longer J3 Bands)

Code Editing Gives up on T2

Interaction Codebook (Execute, Save, Key, Mouse, Select Events)

Cell Switching, Code Select & Typing, or Code Execution

Concentrated Typing (Narrow) or No activity (Wide)

Same-cell Code Editing

Selection and Micro Edits

Cell Select or Code Execution

CODE DESCRIPTION

Code Tracing (Longer J5 Bands)

Group A  Computational Notebook Power Users (6 users)

Group B Traditional IDE Programmers (11 users)

Time (MM:SS) 26:000:00

Interaction Process Chromatogram
(n= 17, W=3, ε=10, ∆=327.76, ∆’=86.53, 

ƒ=“duration”, η = “frequency”)

Fred (414) B

Foraging Foraging + 
Integrating Information 

Foraging

%

10.63

18.96

46.59

2.32

21.49

Figure 6. Interaction Behaviors (27K samples, 5 codewords)

For the respective analyses, these data points have been re-
moved. Codebooks were computed over the full dataset on a
subset of features: 1) an emotion codebook, a combination of
heartrate (an indicator of valence), and phasic electrodermal
activity (associated with shifts in arousal from event-driven
stimuli), and 2) an interaction codebook, composed of Jupyter
interaction logs features including save, execute, select, mouse,
and key chunk events (# of uninterrupted words typed). Aver-
age codebook compilation time was 3 minutes.8

Hybrid Microgenetic Analysis
Process. Across two paper authors, activity data was in-
ductively coded guided by the emotion and interaction chro-
matograms.9 The coding phase was facilitated through a col-
laborative spreadsheet where memos were created for activity
surrounding each task and codeword across participants. For
example, memos for J2 describe 1) its expression with re-
spect to task phase (expressed during the latter part of T1-4),
2) duration and composition of bands (typically seen in 1-4
seconds bands), and 3) the observed behavior of the user (acti-
vated around concentrated typing events). While the analysis
focused on features associated with the codebook under review,
we gradually incorporated other features into the analysis due
to their high correlation with the phenomena being reviewed.
For example, patterns in heartrate (emotion) were correlated to
J2 windows (interaction). Transcripts were used to condition

our interpretation and refine our inductive codes; themes were
then synthesized and assigned a semantic label. From user
segmentation, participants were clustered into two groups (A
and B), and memos were used to distinguish differences in
each group’s behaviors.
8The full compiled chromatograms are available as supplemental ma-
terials. Colormaps were chosen from the cmocean thermal and rain
colormaps — perceptually uniform color scales that can be easily dis-
ambiguated between different codebooks. Colors are assigned based
on code bandwidth; chromatograms are sorted by user segmentation
using codeword frequency as the activity feature vector η .
9Pseudonyms are used to protect participant anonymity.

The Interaction Codebook
Using the analysis interface, we reviewed the periods of ac-
tivity associated with each of 5 codewords in the interaction
codebook for 17 users and collected descriptions of observed
behaviors (Figure 6). The micro-behaviors identified by the
codebook activity segmentation algorithm described when,
how quickly, how much, and in what context typing took
place: J2 expressed for long spurts of key events such as in
the case of transcribing a mental algorithm or commenting
code. Three other codewords distinguished micro-edits: J4
expressed during Tweaking where a couple of characters are
changed; larger edits where distinguished based on whether
they occurred within the same cell ( J3 ) or within different
cells ( J1 ). J5 was expressed when cells were selected but
no typing had occurred; this was found in behaviors such as
code execution or in Cursor Reading, where a user selects,
highlights, and tracks text within a cell as they read. De-
bugging behaviors like Code Tracing, were characterized by
alternating bands of J5 and J3 , where a user walks through
the algorithm, highlighting text as they step through each state-
ment and make same-cell edits. Conversely, Code Tracing
had similar characteristics to Reflexive Debugging, the act of
using information from the debug console such as error or
print statements to update code; in the chromatogram, it is
expressed by stronger bands of J3 with bands from J5 and
J4 . Because of z-normalization in our algorithm, lack of

Jupyter activity was mapped to either Codewords J2 and J3 ,
but can be distinguished by notably longer band widths and
refer to activities like writing on scratch paper or Foraging,
i.e., looking for information such as through StackOverflow.

The most fluent of the computational notebook users, finishing
all four tasks without encountering significant difficult, was
Ashley (#512), a four-time undergraduate teaching assistant
for an introductory computer science course well-versed in the
class of interview questions in the study task (activity depicted
in Figure 6). When approaching T2, a dynamic programming
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Emotion Codebook (Phasic Electrodermal Activity, Heart Rate)

CODE DESCRIPTION Group A  Wayfarers (8 users)

Group B Foragers (8 users)

Time (MM:SS) 26:000:00

Emotion Process Chromatogram

Resolving Difficulties

Process, Reading, or Scrolling

Encountering Difficulty

Finding Information

Thinking or Reflecting

(n= 16, W=5, ε=3, ∆=226.38, ∆’=87.94, 
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Rene* (614) A
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Typing
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%
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0.50
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Figure 7. Emotion Behaviors (25K samples, 5 codewords)

task, she began by first writing a function definition and then
proceeded directly to comment on the expected function be-
havior before any attempt of writing a mental algorithm or
sketching pseudocode. She utilized the comments as a mech-
anism to "think about exactly what [she] wanted to write in
the code instead of jumping in" and possibly "misinterpret the
question." Ashley also noted that commenting added a sense
of agency, where the action "builds [her] sense of commitment
to a code that [she is] writing," and also inspires her to "make
[the code] good if [she comments] it."

Ashley’s algorithm writing process differed considerably from
other participants, writing only a couple of lines before paus-
ing to reflect and verify her work - a process we term Code
Crafting. In contrast, others would engage in transcribing their
entire mental or written algorithm without stopping to reflect.
Notably, during this period of code crafting, Ashley would
make micro-edits to the preceding lines in her code, before re-
turning to add new lines. During the latter part of this process,
she constructed test cases in a different cell followed by short
periods of reflexive debugging, adding additional test cases
until she was satisfied with the correctness of her solution.

The behavior of code crafting was made salient in the inter-
action chromatograph, consisting of rapid alternations of all
codewords except J2 and J3 – the long-edit codewords.
Ashley moved so quickly in both mentally compiling her code
and proactively debugging her work that long periods of typing
were rarely observed. The rest of her session is characterized
by long bands of J2 which correspond to no Jupyter activity;
these questions were perceived as more mentally workable
by Ashley. As one of the only participants to finish all four
tasks under the time limit, she additionally refined the docu-
ment, doing everything from adding assert statements and pre-
serving important elements of her process, to even restarting

the Jupyter kernel to number the cells sequentially. Ashley’s
unique attention to detail and the aesthetics of her code was
manifested through her active commenting and persistent code
crafting throughout the coding session.

Overall, we clustered each user based on codeword frequency
distribution, yielding two groups – A(6 users) and B(11 users).
We annotate Group A as computational notebook power-users
due to a higher frequency and higher average bandwidth of
J1 , J2 ,and J3 – codewords associated with actively using

more than one cell and engaging with more concentrated typ-
ing. Notably, this group’s interaction chromatographs show
periods of code crafting. In contrast, Group B follows more
traditional IDE workflows, keeping most coding activity to a
single cell, writing pseudocode (on paper or in a cell), convert-
ing it into working code, and then engaging in reflexive de-
bugging. Group A participants had higher-rated programming
sessions (66% versus 54%); novice participants, distinguished
by lack of professional programming experience, were more
strongly associated with Group B (novices: 33% A, 64% B),
suggesting that workflow can influence how programming
sessions are perceived.

The Emotion Codebook
The analysis interface used Jupyter interaction logs, think
aloud transcripts, and video recording to contextualize our
interpretation of participants’ emotions, interpreting biosignal
on the Circumplex Model of Affect [37]. We reviewed activity
associated with each of 5 codewords in the emotion codebook
for 16 users (1 user had a malfunctioning biosignal recording).
The codewords identified by the algorithm distinguished the
type of phasic activity experienced: a short phasic response
E5 corresponded to behaviors like thinking; longer, more

sustained phasic activity E3 was more akin to encountering
difficulties; a lack of phasic activity E2 was strongly corre-
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lated to periods of reading, scrolling, and processing. Two
codewords responded to changes in heartrate: for E1 , falling
heart rates correlated with participants resolving difficulties;
for E4 , rising heart rates were linked to individuals finding
content especially when foraging (Figure 7).

René (#614), a graduate student in Computer Science with
more than 20 years of industry experience in backend develop-
ment, demonstrated a unique emotion chromatogram with the
maximum number of 172 codeswitches (∆) consisting of band-
ing behaviors with E1 , E3 , E5 ; these bands are aligned to
her Typing Chunks, a period of successive key events before
any large pause. In contrast, Rachel(#211), a third-year under-
graduate Mechanical Engineering student (∆ = 83), had larger
bands of activity with E2 primarily activated when she read
and processed Stack Overflow content.

Both René and Rachel approached T2, a dynamic program-
ming question with a solve-by-matrix approach, casting the
problem to familiar 2D matrix manipulation that both had
used in recent work. Both regularly encountered challenges
of recalling Python syntax and programming conventions, yet
Rachel abandoned the problem after 4 minutes, while René
continued undeterred for another 24 minutes. René decided
not to import pandas or numpy to ease matrix operations be-
cause she considered the dependency to be inconvenient for
"someone else" who might be using this code. René faced
syntax difficulties and Python memory and pointer manage-
ment confusions, but she consciously decided not to consult
online resources because she felt "it’s unlikely to be exactly
what [she] wants" and she "sort of know what [she] is doing."

Instead, René engaged in Thinking Through Doing behaviors,
wrangling difficulties using Probing Cells, or peripheral cells
dedicated to testing understand, probe, test, and validate syn-
tax and code behaviors. This Thinking Through Doing strategy
differed from other approaches such as foraging (Rachel) or
Reflection (long periods of E2 and E5 ). During her probing
process, René encountered many errors but was not annoyed,
recognizing that "people get frustrated when they get errors"
and that "random errors are inevitable", explaining her ratio-
nale for using probing cells. When interrupted at the end of
the session, René refused to end the programming session
and spent several more minutes before reaching a resolution.
René’s refusal to end the programming task session is a strong
indication of René’s resiliency. Although both encountered
difficulties, we observed that René’s phasic activity had large
peaks concentrated in the initial solution formulation, not
during the act of programming. From the think aloud, René
indicated that she was in a state of flow. This suggests that
the state of flow can act as Creative Momentum: if the body
or mind is in motion, the emotional phenomena experienced
during creative processes are less affected by stressors, such
as encountering an error in programming.

Codewords expressed strongly for local phasic features, how-
ever, heartrate (a more global feature) was less present in the
emotion chromatograph. When comparing heart rate against
the time period spent on each task, we found that many par-
ticipants expressed what we term Problem Coasting where
each task exhibits "rollercoaster" heartrate forms with one or

more peaks; valleys were observed during compile moments
(Figure 7 Rachel). For René, T2 had 8 peaks; in contrast,
Rachel exhibited about 2 peaks per problem. These peaks also
coincided with typing chunks. Although this phenomenon was
not associated with successful or fast completion times, it does
present itself as an indicator of stamina and resiliency.

Overall, we clustered users based on their emotion codeword
frequency distribution, yielding two groups – A (8 users)
and B (8 users). Group B had 66% more expression of
E2 which corresponded to participants that engaged in more

cognitive actions ("reading, thinking through the algorithm")
such as Rachel; in contrast, Group A had more codeswitches
of E1 , E3 , E4 , like René. A paired-samples t-test was
conducted to compare the number of codeswitches between
groups. There was a significant difference in the scores for
Group A (µ=100.4, σ=20.5) and Group B (µ=75.5, σ=19.1);
t(7)=2.49, p=0.013. These findings suggest that Group A
engages with more thinking-through-doing behaviors. For
descriptive purposes, we label Group A as Wayfarers, work-
ing through and adapting to changes in the code content, and
Group B as Foragers, searching for information.

DISCUSSION
In this work, we demonstrated how Hybrid Microgenetic Anal-
ysis could be used to both capture and characterize program-
mer’s tacit process when using computational notebooks. We
discuss the implications for computational ethnography, stud-
ies of tacit process, and IDE design.

Observing tacit process
Tacit process is difficult to observe; our study leveraged the
open-source Jupyter notebook and E4 biosignal wristband to
capture data that provided a more holistic profile of process.
This profile made visible the relationship of emotion during
the act of programming, revealing behaviors such as Problem
Coasting that would otherwise be unobservable using tradi-
tional ethnographic approaches. It additionally provides a
description of cognitive activity during processes like Code
Crafting that distinguish it from Reflexive Debugging.

Although participants experienced some observer effects, they
reported these effects abating over the course of the program-
ming session. This suggests that conditioning analysis on
latter parts of the session data could mitigate this bias. In addi-
tion, replicability is limited by equipment costs. We anticipate
that sensing and activity logging technologies will develop to
minimize observer effects (such as using mouse movement to
detect stress [43]) that could remove the dependency on spe-
cialized hardware like the E4 wristband and be used in more
naturalistic settings at scale. By using HMA, new insights,
such as behaviors identified in our study, can be used to inform
the development of specialized sensors or machine learning
routines to accurately classify useful activity in realtime.

Scaling microgentic analysis
The volumes of data generated by microgenetic analysis or
the amount of post-processing needed to extract important
information limit the applicability of traditional microgenetic
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analysis, especially in supporting quick, iterative design work-
flows. We demonstrated that our method is capable of pro-
cessing 15 hours of data and 810K data points into process
chromatograms in under 6 minutes; such chromatograms were
used to guide the analysis of the data, identifying users and
periods of activity to investigate.

The statistical power of amalgamating user data allowed some
flexibility with data collection (e.g., corruption, faulty sensors).
In our case, although biosignal data was lost for one session,
the Jupyter interaction logs could still be used to inform the in-
teraction codebook. Although our analysis focused on L =3-5
seconds behaviors with k =5 codewords, the activity segmen-
tation algorithm allows for users to use hyperparameters k
and L to select the level of analysis granularity. Lowering the
number of codewords under analysis could be used to identify
more robust classifications of behavior and inform feature en-
gineering for machine learning algorithms. While the coding
approach used in the case study was exhaustive (memos were
created for each participant, task, and codeword), our process
began with reviewing the activity of “exemplar" participants
that represented centers from user clusters. We see potential
for increasing the statistical power of the codebooks but using
a principled sampling approach to conduct deeper qualitative
analysis on such exemplar users. In Eluent, the degree of being
able to label, annotate, or cross reference chromatograms was
limited to brush-and-link interactions with traditional ethno-
graphic data; future work can examine methods of facilitating
direct annotations (e.g., as a word-scale visualization in tran-
scripts [15]), searching for and labeling observed patterns,
and automatically laying out labels (e.g., like those manually
added in Figure 7 and 6) to create data-rich visualizations.

Mitigating bias in computational ethnography
The act of codifying tacit process allows for knowledge to be
transferred through traditional information channels. How-
ever, widespread adoption and dissemination can lead to a
single process becoming a standard, creating an epistemo-
logical monoculture that privileges those that align with the
way of thinking it supports. HMA provides an avenue for
comparing process among multiple groups of practitioners
(versus asking only the "experts"). Through user segmenta-
tion, HMA revealed programming processes that break along
boundaries other than level of expertise that can be used to
inform a more plural codification of process. Being able to
quantitatively characterize programming sessions allowed for
individuals to be quickly compared and groups to emerge from
the data which otherwise would not have been easy to identify.
For instance, although professional programmers and gradu-
ate students exhibited more interactions with computational
notebook cells, it was also the case that novice programmers
from a MATLAB background employed a similar process.
Such distinctions can be used to tailor instructional material
to specific groups to develop best practices.

Activity is always partially observable which without context
can easily be misinterpreted. As opposed to supervised meth-
ods that require hand labeling, our method uses unsupervised
clustering to label time-series data. These labels are ambigu-
ous but reflect a distinct activity observed in the data without

imposing a meaning. We specifically incorporate an interpre-
tation phase to build an understanding of phenomena observed
in the process chromatogram conditioned against field notes,
interview transcripts, and video recordings. Much of our setup
was instrumented to sense useful information in the program-
ming environment, but there exists a unique opportunity to
have a mobile and streamable sensor toolkit for logging cre-
ative activity in both digital and physical settings. Maintaining
privacy in such data collection environments requires a clear
social contract between user and space, communicating how
data is being used to inform resources. For collaborative prac-
tices such as peer programming, future work will explore how
sensor data can be visualized and characterized as a dialectic
to provide denser description of socio-technical interactions.

Informing the design of IDEs
A better understanding of tacit process has large educational
implications, aiding in developing instruction that better fa-
cilitates skill acquisition and imbues resiliency in a practice.
From our analysis, we observed heartrate patterns marking
the beginning and end of solution attempts by participants
in our study. Additionally, we noted the number of heartrate
peaks over the course of a solution attempt as indicative of
stamina and resiliency. Such patterns in heartrate can be used
as an evaluation metric for computer science education that
foregrounds resiliency as a marker of programming skill.

We also observed instances of creative momentum, or the
continuous presence of external activity, like typing and cell
switching, as mitigating high phasic electrodermal activity (as-
sociated with higher stress or cognitive load). This aligns with
the phenomena of flow in creative psychology literature [8], a
state of mind where a person becomes fully immersed in the
activity at hand, and offers some evidence towards the value of
flow in sustaining creative activity. Such behaviors that elicit
creative momentum could be used as a design variable to aim
for in creativity support tools. Such tools could maintain cre-
ative momentum by encouraging the user to engage in tedious,
ritual tasks (e.g., refactoring code) when a heavy cognitive
load (e.g., designing test cases) is expected.

CONCLUSION
By foregrounding process, this work invited awareness, cri-
tique, and discussion of a central element of creative devel-
opment. This work introduced a method for describing tacit
process within creative practices through Hybrid Microgenetic
Analysis. We demonstrated the portability of the method in
a digital practice – programming with computational note-
books. The analysis revealed distinctions between traditional
IDE workflows and computational notebook workflows, heart
rate patterns as indicators of resiliency and stamina, and the
phenomena of creative momentum as regulating phasic elec-
trodermal activity during the act of programming.
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