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Figure 1: (A) Viscous materials such as honey, water, and peanut butter are pneumatically retracted and extruded through an air 
tube; (B) air pressure readings collected during this process are used to generate sensor vectors that encode distinct rheological 
information; (C) a repository of 26 viscous materials with 12 sensor vectors is used to construct a rheological embedding space, 
or RheoMap; (D) reference materials serve as landmarks to design interactive tools for navigating the rheological space. 

Abstract 
Viscous materials such as inks, gels, pastes, and slurries are ubiq-
uitous across domains like food science, smart materials, digital 
fabrication, and the arts. However, their dynamic and unpredictable 
behavior—shifting over time and in response to environmental fac-
tors—poses challenges, often requiring costly equipment for accu-
rate rheological analysis. This paper presents a low-cost, accessible 
sensing routine that retracts and extrudes viscous materials through 
an air tube, generating sensor vectors rich in rheological data. By 
embedding data from 26 rheologically diverse materials into a two-
dimensional space, we create RheoMaps that allow for tracking 
material changes over time, distinguishing concentrations, and tun-
ing rheological behaviors. These maps offer practical benefits for 
detecting preparation errors, guiding material design and documen-
tation, and providing tutorial waypoints. We further discuss how 
this approach can be extended to extract relational insights from 
sensor data, improving material literacy and manipulation across a 
range of applications. 
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1 Introduction 
In digital fabrication, the ability to manipulate and handle diverse 
materials such as liquids, inks, pastes, slurries, and gels is becoming 
increasingly important as the field expands beyond plastics. This 
evolution introduces more complex, functional, aesthetic, and sus-
tainable material options, particularly through advancements in 
3D printing technologies. Viscous mediums, unlike their plastic 
counterparts, are much more stubborn to work with. The materials 
are more prone to change from often unintended chemical and 
physical processes such as curing, drying, decaying, melting, or 
falling out of suspension. With these more dynamic characteristics, 
such materials require a different level of quality control, care, pa-
tience and understanding [4]. Expertise in handling such materials 
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is often the domain of material whisperers — those with both hands-
on skills and theoretical knowledge to address the interdisciplinary 
demands of design, engineering, computation, material science, and 
manufacturing. 

Several factors further complicate working with viscous materi-
als beyond their dynamic behaviors. Ambiguities in protocols or un-
clear instructions can exacerbate these challenges, leading to issues 
with material compatibility, consistency, and dispersion [12, 38]. 
When working with rheological modifiers, such as thickeners or 
thinners, many practitioners are left to rely on subjective obser-
vations of before-and-after effects. Unfortunately, these insights 
are rarely documented, often forgotten over time, and difficult to 
replicate [37]. While sensor readings can provide immediate data on 
a material’s properties, they often require a wide breadth of costly 
equipment (e.g., viscometer, texture analyzer, rheometer) and fail to 
capture how different materials relate, interact, and perform under 
varying conditions. Scientific scales, such as the viscosity range of 
honey (2,000 to 10,000 cP), demand significant recall and expertise, 
adding yet another layer of complexity to the process. 

As a result, integrating these materials into digital fabrication and 
more broadly within tangible computing, material-centered design, 
and human-food interaction pose substantial challenges. To better 
navigate this evolving landscape and support work with viscous 
mediums in HCI, new approaches are needed for troubleshooting 
and engaging with these materials such as inks [20, 34, 36, 56], 
gels (silicone [38], gelatin [35], hydrogel [19], mousse [66]), pastes 
(biomaterials [2, 49], chocolate [21, 22, 24]), and slurries (clay [3, 29] 
and concrete [60]). These challenges highlight the need for a more 
accessible, systematic method for understanding viscous materials. 
This work contributes: 

• Rheological Sensing Routine. Inspired by the action of 
drawing a milkshake through a straw (Figure 1A), we in-
troduce a simple, low-cost rheology sensing technique that 
uses an off-the-shelf pneumatic system (Programmable Air -
PA) and a sensing system (ThingPlus with Micro Pressure 
Sensor) to record pressure data as small material samples (20-
50 mL) are retracted and extruded through interchangeable 
air tube probes, with minimal material loss (0-5 mL). These 
retraction-extrusion pressure pulses (REPs) provide a quick 
snapshot of a material’s rheological properties within 1-2 
seconds (Figure 1B). The sensing technique requires no re-
setting and can be automated for cyclic sampling, making it 
highly efficient for both open-air and integrated applications. 
Formal characterization of the REPs demonstrates sufficient 
variability across different materials and reliable signal qual-
ity for various tasks, including classifying materials by their 
rheological behaviors, monitoring material stability over 
time (e.g., during curing or setting), and distinguishing fluid 
compositions (e.g., concentrations). 

• Rheological Embedding Space By treating REPs as sen-
sor vectors, we applied t-SNE to embed 12 sensor vectors 
of 26 viscous materials into a two-dimensional space (Fig-
ure 1C). This embedding spans a wide range of rheological 
types commonly used in digital fabrication, physical com-
puting, and human-food interaction, providing a unified 
framework for comparing and analyzing material properties. 

To enhance interpretability and relational insights, we gener-
ated RheoMaps from this embedding, extending the concept 
of latent space cartography (LSC) [27] from its traditional 
application in semantic spaces to a physically grounded, 
sensor-based domain. These RheoMaps are used to demon-
strate the practical utility of the embedding space, offering a 
clear visual tool for analyzing and interpreting rheological 
data. 

• Dynamic Mapping Interaction Coupled with easy-to-
obtain REP sensor vectors, RheoMaps can be used to uniquely 
serve as an actionable tool that can be integrated into making 
and fabrication workflows. Unlike traditional static visualiza-
tions, RheoMaps allow practitioners to plot new data points, 
situating their materials within rheological space in real 
time (Figure 1D). We demonstrate three dynamic mapping 
interactions: (1) neighborhood mapping enables verification 
of critical properties such as extrudability by determining 
whether a material aligns with the appropriate cluster of rhe-
ologically similar materials; (2) route guidance and detours 
allows practitioners to evaluate the effects of modifiers such 
as thickeners or thinners or processes like curing, observing 
shifts towards target reference material landmarks; and (3) 
rheofencing enables real-time monitoring of material behav-
ior during processing, detecting if a material deviates from a 
target rheological region. 

In this paper, we first review sensing and sensemaking tech-
niques for working with viscous materials in HCI. Next, we intro-
duce the REP sensing routine and our RheoMap generation method. 
We then present a set of RheoMaps and their characterization, and 
demonstrate how these maps can be used in dynamic mapping 
interactions. Finally, we discuss opportunities to expand RheoMaps, 
including adding environmental factors like humidity and temper-
ature as map layers, developing shared RheoMaps for ecological 
validation of material recipes across different users, materials, tools, 
and techniques, and improving documentation by incorporating 
reference waypoints. 

2 Related Work 
Material detection, classification, and characterization have a unique 
history within the HCI community. We review works within the 
tangible computing, ubiquitous computing, and digital fabrication 
communities that specifically work with material sensing and ex-
plore studies outside of HCI, especially in rheology, as the study of 
flow behavior, that focus specifically on fluid materials sensing. 

2.1 Materials Sensing in HCI 
Within HCI, the ability to explore the intricate connection between 
humans and materials has been spurred by innovations in physical 
computing and material science [47]. These efforts have sought 
to understand how technology can support human-material dia-
logue to enable new functional and aesthetic expressions [14, 57]. A 
consistent challenge, however, has been the diverse materials that 
have entered the purview of HCI practices. Niholt et al. described 
the need for Smart Material Interfaces (SMIs) that allowed users to 
dynamically alter material properties in response to stimuli such as 
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electricity, magnetism, and temperature, yet sensing and monitor-
ing material properties remain an open question. Feinberg et al. [13] 
argued that interactions should prioritize the ability of designers to 
see and understand the potential of materials, or material vision. 

A suite of sensing techniques shows promise toward achiev-
ing this vision, yet liquids and liquid-like materials are often left 
out of human-material interaction design. Liquid material sens-
ing techniques show positive signs towards supporting material 
practices. Chi et al. [8] introduced a real-time, cost-effective, and 
minimal waste texture scanning technique capable of detecting 
the fluid states of slurry-like materials. Other techniques have im-
proved the robustness of liquid sensing through contactless sens-
ing. Leveraging the transparency of materials, SensiCut [11] and 
SpecTrans [50] applied optical sensing for contact-less material 
identification. Radio techniques such as WiFi/LiDAR sensing [6], 
mSense [63], and FG-LiquID [25] were used to demonstrate that 
electromagnetic material properties can be recovered from the re-
flection of radio frequency signals and used to detect materials 
in ubiquitous computing settings. Vibration and acoustic material 
sensing such as Vi-liquid [17], Akte-Liquid [54], and sound simula-
tion with VR/AR [61] also demonstrated strong accuracy; however, 
these techniques remain limited to sensing static material. Within 
micro-electromechanical systems (MEMS), microcantilevers [39] 
have proved capable of odor and material sensing [43]. Despite 
advances in material sensing and its applications within HCI have 
been underexplored. Since many of the sensing techniques involve 
minimizing contact between the material and electronics, the ability 
to sense flow behaviors in liquids has been limited. Our technique 
leverages pneumatics to maintain the integrity of electronics, pro-
vide flexibility in its usage across a variety of fluid sensing condi-
tions, and obtain rheological data previously uncaptured by prior 
work. 

2.2 Conventional Measurement of Fluid 
Viscosity 

In rheology, the measurement of a fluid’s viscosity, its resistance to 
flow or deformation, is a critical aspect of materials science, fluid 
dynamics, and many other fields. The flow rates of highly viscous 
fluids, such as honey, are considerably slower than those of low-
viscosity fluids, like water. Several traditional methods for viscosity 
testing exist, each with its specific set of advantages, limitations, 
and most suitable applications (showed as in Figure 2). Some of the 
most common methods include rotational, capillary, falling ball, 
back-extrusion, and oscillatory viscometer [53]. 

Rotational, cone-and-plate and falling ball viscometers, are good 
for measuring for steady-flow conditions but may lack accuracy 
in complex behaviors, such as time-dependent materials; while os-
cillatory viscometers provide insights into visco-elastic properties 
but are limited in low-viscosity fluids and complication usage. The 
retraction-extrusion pulses generated using our system are simi-
lar to back-extrusion viscometry or capillary viscometer [10]; in 
contrast, our method draws materials into an air tube probe and 
subjects them to forces from changes in air pressure. The pressure 
is distributed over the cross-section of the air tube and material, 
thereby applying a shear force to the material upon extrusion. We 

used a commercially accessible pneumatic system [51], which ef-
fectively minimizes material consumption, accomplishes prompt 
outcomes within a time frame of 1-2 seconds, and enables iterative 
testing to evaluate the system’s performance across multiple cycles. 

Recent improvements in machine learning (ML) have opened up 
new ways to study rheology, especially in predicting how materials 
will behave. Mahmoudabadbozchelou et al. [31, 33] demonstrated 
that machine learning models could be used to identify complex 
rheological properties from a small dataset of cone-and-plate vis-
cometer measurements. When coupled with a rheology-informed 
neural network (RhINN) [32], a few empirical measurements have 
been shown to be capable of recovering more constitutive models 
that explain how materials behave more generally to stress and 
strain. When formulating new materials, the Random Forest al-
gorithm has shown value in identifying qualitative and physical 
factors in material formulas influencing the printability of hydro-
gels as soft ink and bio-ink materials [42]. While a promising route 
for material sensing, these models remain specialized. In-the-wild 
data collection is needed to adapt these models to a wider breadth of 
materials. We view our sensing technique working in synergy with 
machine learning approaches, specifically providing a feature rich 
rheological profile from a sensing mechanism that is repeatable, 
reproducible, precise, low-cost, and portable. 

2.3 Latent Space Mapping 
Latent space cartography has proven useful in helping users explore 
and verify relationships between data points in various domains. 
For instance, Liu et al. [27] demonstrated how users could discover 
connections within an emoji latent space by interacting with fea-
tures like nearest neighbors or reprojecting the space along an 
attribute of interest. Similarly, VideoMap[26] applied latent space 
cartography to organize videos based on properties such as color, 
content, or motion, introducing interactions like districts, paths, 
and landmarks to support video editing. RecipeScape [7] expanded 
this concept into the culinary domain, creating a map for high-
level exploration of recipes that visualized usage patterns through 
stacked trees and provided statistical displays of co-occurrence 
patterns. 

While these methods have significantly improved the visibility 
and explainability of latent spaces, they primarily focus on explor-
ing pre-existing data. What remains underexplored is how users 
can actively engage with latent spaces to generate new data points 
and use these spaces for sensemaking. This gap highlights the need 
for approaches that allow users not only to navigate and interpret 
latent spaces but also to actively contribute to and manipulate them 
for more meaningful insights. 

2.4 Sensor Data Display 
Traditionally, sensor data has been displayed using familiar meth-
ods such as classic readings and time series data (e.g., line graphs). 
While effective, these approaches often limit the ways in which 
users can interact with or interpret the data. Researchers have ex-
plored alternative ways of making sense of sensor data through 
data visceralization approaches. For instance, sonification has been 
used to provide auditory feedback during processes like crocheting, 
where the sound reflects the movement of the needle, encouraging 
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Figure 2: Traditional Methods for Measuring Viscosity Common industrial methods for viscosity measurement include: (A) A 
rotational viscometer, which determines viscosity by measuring the torque required to maintain a spindle’s constant speed in a 
liquid; (B) A cone-and-plate viscometer, which calculates viscosity based on the force needed to rotate a cone at a set speed 
while a small volume of liquid is positioned between the cone and a flat plate; (C) Capillary viscometry (flow cup), which 
measures the time it takes for a liquid to flow through a small hole at the bottom of a cup; (D) Falling ball viscometry, which 
determines viscosity by timing how long it takes for a ball to fall through a fluid under gravity [41]. 

practitioners to reflect on their craft [52]. Tian et al. [55] employed 
simulated ambient particles to visualize data, offering a more im-
mersive and experiential way to engage with information, moving 
beyond the limitations of traditional graphs and bar charts. Sensor 
data from multiple sensors have been used to create spaces to fa-
cilitate greater sensemaking. For example, microfluidic chips have 
been utilized to juxtapose colorimetric responses for plant health 
diagnostics, visualizing critical metrics such as nitrate levels, pH, 
and hardness [28]. These novel approaches highlight a shift toward 
more embodied, interactive data representations. However, a gap 
remains in actively using sensor data to guide material processes 
in real time. While visualizations have advanced, direct integration 
of sensor feedback into workflows — beyond static readings and 
time-series graphs — presents a critical opportunity to explore how 
sensor data can shape and enhance material workflows dynamically. 

3 Rheological Sensing Technique 
Working with fluid, viscoelastic, or slurry materials presents dis-
tinct challenges due to their dynamic nature. These materials are 
especially temperamental – they can dry out, cure, become con-
taminated, or undergo rapid changes, making real-time monitoring 
essential. However, existing systems often lack the capability to 
capture the rheology of such materials at the moment of interest. 
To address these limitations, we designed RheoMap, a novel wire-
less sensing system to track rheological material inquiries using 
off-the-shelf components; to explore fluids interaction, enhancing 
our understanding and interaction with their properties for creative 
applications and fabrication in HCI. 

3.1 Sensing Rationale 
Sensing rheological properties of materials requires a need to under-
stand how material behaves under external forces. The challenge 
lies in how to apply a force to a uniform area of a liquid or liquid like 

material sample (stress) and measure its deformation or displace-
ment [30]. Our sensing technique is inspired by the back-extrusion 
technique where a material sample is deposited in a cylindrical 
receptacle that is unobstructed at its upper end [9, 16, 45]. A piston 
with a reduced diameter is then used to apply a force to the material, 
leading to its displacement into the space between the piston and 
the cylinder (annulus) [1]. Our approach uses a plastic air tube as 
a receptacle and pneumatic actuator as an "invisible" piston that 
can apply a constant force to both draw and expel material from 
the tube. The air tube ensures that forces are constrained to the 
cross-sectional area of the air tube, while pneumatic sensing allows 
us to indirectly measure material displacement by sensing the air 
pressure over time within the tube. For instance, the amount of 
time it takes for a material to be expelled (air pressure equal to 
atmospheric pressure) from the tube indicates how far the material 
traveled within the tube. 

3.2 Sensing Routine 
The RheoMap sensing routine is driven by an off-the-shelf Arduino-
based pneumatic system (Programmable Air (PA) [51]) that houses 
motor pumps for blowing, sucking, and venting operations. A sepa-
rate air pressure sensor module (Qwiic MicroPressure Sensor) has 
a pressure detection range of absolute pressure from 0 to 30psi 
(206.84kPa). A WiFI-enabled microcontroller (ESP32 Thing Plus) is 
connected via serial to the Programmable Air’s Arduino Nano to 
support wireless sensing and data streaming. The sensing routine 
retracts and extrudes materials connected to the pneumatic system 
with a 100 cm tube with an inner diameter of 4.7 mm split evenly 
with a quick-release connector. We use a serial interface to specify 
material sample names; collected data from the sensing routine is 
then timestamped and saved to a csv file. 

Air pressure readings are sampled at a rate of 20 samples per 
second (20 Hz); sampling occurs during a non-blocking delay (NBD). 



RheoMap CHI ’25, April 26–May 01, 2025, Yokohama, Japan 

Figure 3: Rheological Sensing. (A) pneumatic retraction and extrusion for sampling fluid materials with detachable air tube 
probes; (B) by sensing air pressure over time, the method is capable of extracting a retraction-extrusion pulse (REP) that 
captures rheological properties of liquid materials; these REPs can be used to (C) support interactive material classification to 
support design practices, (D) detect rheological properties to support digital fabrication, (E) detect different material stages to 
support material practices, and (F) characterize concentrations of solutions for biomaterial fabrication. 

Figure 4: The Retraction-Extrusion Pulse (REP) - Pressure and time (P/T) features are used to characterize how materials behave 
when retracted into an airtube probe and extruded at a constant rate. The sampling technique takes about 1000 ms; a short 
pause between samples is needed for the system to stabilize. 

(1) Probe Preparation Insert an air tube probe into the quick 
connector (standard 4.7 mm ID, 100 cm). Submerge the probe 
into the material sample without touching the bottom of the 
container. 

(2) Retraction Set the vacuum motor to 100% power (2L/min) 
and sample during a 250 ms NBD. 

(3) Extrusion Set the pump motor to 100% power (2L/min) and 
sample during a 250 ms NBD. 

(4) Cycling To improve the reliability of the data, the routine 
can be repeated without intervention and support cycle test-
ing. The same probe can be left in the material, rinsed and 
reused, or otherwise disposed for food-safe applications. 

The 250 ms sampling interval was empirically selected as suf-
ficient for capturing both high-viscosity (e.g., honey) and low-
viscosity (e.g., water) samples within the probe segment of the 

system. For portability and compatibility, a standard tubing size was 
used. The motor power was set to maximum (2L/min) to produce 
the strongest forces, allowing us to observe and analyze rheological 
behaviors effectively across materials. 

Calibration Routine. To support diverse system configurations 
and sensing routines, we incorporated a calibration routine using 
water as a reference material to improve measurement accuracy. 
This routine involves comparing air pressure data from water sam-
ples in a new system setup (e.g., using different air tubes, motor 
power, or sensors) to data from our reference system. First, we ex-
tracted features computed base on statistical, shape, and frequency-
domain by using mean, standard deviation, median, and dominant 
frequency. With those features, an error function were constructed 
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to apply a phase shift, scaling transformation, and intercept adjust-
ments, minimizing the area difference between new and reference 
signals. To further enhance alignment, we used Polynomial trans-
formation [5, 44] with 3 degree for amplitude scaling, capturing 
both linear and non-linear variations in the signal. K-means cluster-
ing (n=2) from Scikit-learn [5, 44] was applied to group materials 
by intercept values and baseline offsets, enabling targeted inter-
cept corrections based on the distinct characteristics of each fluid 
materials. We employed Powell optimization [44, 46] to minimize 
this error term, allowing us to learn an optimal scaling, phase shift 
parameters, intercept, and polynomial coefficients to better align 
the data. We then extracted features from new data and applied clas-
sification based on those feature with Random Forest [44] to predict 
the appropriate intercept adjustments, thereby aligning data more 
closely with the reference materials and tested the performance of 
our transformer and calibration. We applied train on the old con-
figuration dataset; then test the new sensor data before and after 
transformed with split cross-validation across of calibration dataset 
with materials (n=5). The evaluation showed an F1-weighted score 
36% without calibration and 86.4% with calibration, which indicated 
the model’s ability to maintain precision and recall across materials 
after calibration. Note that, the calibration routine is only necessary 
when the system has been reconfigured. 

Rationale. Our sensing routine mirrors the rapid alternation be-
tween the suction and expulsion phases method proposed by Perrot 
et al. [45]. This pattern induces a continual flow and counter-flow 
within the material sample, generating rich data on the material’s 
flow behavior and other rheological properties under variable stress 
conditions. In contrast to a mechanical piston, pneumatic actuation 
allows us to repeat measurements, reducing the need for extensive 
cleaning or re-calibration procedures, and further enhances the 
versatility and efficiency of rheological sensing. 

Limitations. The system does not have a check valve to prohibit 
material backflow since the valve was observed to affect the air pres-
sure readings. A short NBD and longer air tube probe are important 
to prevent motor damage. The power of the motors needs to also be 
commensurate with the size of the air tube; otherwise, it is possible 
for the material to escape the air tube probe . The Programmable 
Air motors are not food safe, therefore, it is recommended that food 
samples be disposed. 

3.3 Data Cleaning and Feature Extraction 
In order to extract REPs from sensor time series data, we first seg-
mented the data into individual pulses. The pulse was marked when 
a running average was observed to deviate (start) and return to 
the baseline condition (end), respectively. For our experiments, the 
baseline range of 490 to 510 represented the system at equilibrium 
(atmospheric pressure; 10-bit resolution). A set of data validation 
checks were used to ensure the pulses were in acceptable ranges 
(e.g., duration, amplitude); lastly, collected pulses were padded and 
truncated appropriately to match the average pulse length; the 
pause in our sensing routine was used to ensure that only baseline 
values were padded. 

We then extracted total 12 pulse features that could be used to 
represent the stress and strain of sampled material. As depicted in 

Figure 4, the REP first captures the retraction phase – during this 
phase, the pneumatic vacuum is expelling air from the tube until 
enough of a pressure differential (retraction min) is achieved to 
cause the material to enter the tube (stress). Pressure will rise as the 
material is drawn further into the tube (strain). When entering the 
extrusion phase (stress), the REP shows two drops. The shorter drop 
describes the period in which the material is being expelled from 
the tube (strain), while the following more acute drop represents a 
stabilization phase where the system returns to equilibrium. The 
final feature set baseline, extrusion, retraction, and equilibrium 
phase sensor value ranges and time periods. 

4 Sensor Routine Evaluation 
Data collected from our sensing routine was stored in a sensor 
vector. We conducted a series of characterizations to understand 
the effectiveness of our sensing routine. First, we explored our 
sensing routine’s signal quality. We examined the precision of the 
signal during cycle testing, identified the frequency of outliers 
for different material samples, and assessed the robustness of the 
system given different configurations. To understand the material 
detection power, we trained simple decision tree models to detect 
different rheological types and predict material properties such as 
viscosity, solution concentration, and curing stage. Lastly, we look 
at the overall usability of the technique and report the system’s 
size and weight, cost, data management practices, collection times, 
and the interpretability of the results. 

Protocol. The experiments described below follow a common 
experimental protocol for collecting retraction-extrusion pulses 
(REPs) from material samples using the RheoMap system: 

• Setup Any residual material was first dispelled from the air 
tube probe by using the air pump to release the material 
into a waste beaker; the exterior of the air tube was wiped 
clean. Air tube probes (100 cm, 4.7 mm ID) were reused to 
emulate conditions. For stickier materials like peanut butter, 
the probe was repeatedly rinsed with soapy water. 

• Material Sample: About 100 mL of a material sample (enough 
to submerge the air tube probe) was collected in a glass 
beaker. The air tube probe was suspended over the beaker 
using a beaker clamp; the probe was placed in the center of 
the material sampled, avoiding contact with the bottom of 
the beaker. 

• Data Collection: Sensor readings were collected with a 
1000 ms pause in between cycles to allow the material to 
settle; each sensing cycle lasted 1000 ms. Each sensing rou-
tine, unless otherwise noted, was sampled within 60 cycles. 
Collected data was annotated with a material description 
including the concentration of constituent parts (%), volume 
(mL) of the sample, length (cm) of the tube, pump power 
(%), type of container, liquid temperature, and qualitative 
notes. Collected data was streamed to a NoSQL database 
(MongoDB). 

All resulting data was analyzed using computational notebooks 
(Google Collaboratory) that pulled sensor readings from the data-
base into pandas data frames. 
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Rheological Materials Dataset. Inks, gels, pastes, and slurries are 
ubiquitous across domains in HCI and are often dynamic, tricky, and 
unpredictable. Understanding their behaviors and characteristics 
are essential when working with fluid materials in makerspaces. 
To ensure we covered a wide range of fluids and captured their 
representative properties, we used our sensing system to collect 
retraction-extrusion pulses (REPs) from different materials and 
analyze their rheological behavior. 

A classification dataset was collected to evaluate the sensitiv-
ity of the sensing routine, comprising 26 unique material classes 
selected for their distinct rheological behaviors, including liquids 
with three levels of viscosity (inks, syrups, thick), mediums with 
non-newtonian properties (gels, pastes), and compositions with 
large and fine particles in suspension (slurries) (see Figure 5). A 
total of 1.2k pressure readings (REPs) were recorded. 

4.1 Signal Quality 
Measures. To measure the precision of the retraction-extrusion 

pulses and ascertain the noise level in the signal, we used Peak 
Signal-to-Noise Ratio (PSNR) to measure the noisiness of the REP 
pulses. Given a set of REP pulses for a given material 𝑚, we treated 
the mean REP pulses as the representative signal �̂� , and quantified 
noise using the Mean Squared Error (MSE) as follows: 

1 ∑︁𝑡   
MSE 2(𝑚) = (𝑚 ˆ

 𝑖 −  𝑚𝑖 ) (1) 
𝑡

𝑖=1 

The PSNR value for each class was computed as:   
max

PSNR 20 log
(𝑚)(𝑚) =  · 10 √︁ (2) 

MSE(m) 
where max(𝑚) is the maximum intensity value of the signal. As a 
rule of thumb, a PSNR value of 20dB or lower is considered poor, 
while a 40dB or higher value is deemed excellent. 

To further understand the reliability of the sensor during sam-
pling, we conducted a cycle test to detect outliers. Each material 
was sampled consecutively for 60 trials. We examined the min re-
traction and max extrusion pressure within a material class and 
detected outliers using the 1.5 * interquartile range (IQR) method. 

PSNR and outlier rates were computed for our material space 
dataset 𝑀 (|𝑀 | = 26; n=60+ samples each), different configurations 
of our system, and samples there taken 30 days apart. 

Material Range. Across 26 different materials, the average PSNR 
value was found to be 40.4 ± 6.6 dB with an outlier rate of 6.9%. 
Specifically, the PSNR reached as high as 43 dB for Newtonian 
materials; this trend is corroborated by the small outlier rate found 
in canola oil and water samples; tomato sauce and honey also 
exhibited smaller outlier rates (2%). In contrast, the PSNR values of 
dilatant and thixotropic materials like lotion and jam were notably 
lower, ranging between 31 and 32 dB. More viscous materials like 
peanut butter and hot fudge exhibited an outlier rate of 14%; this 
could be attributed to both limitations in the power capabilities of 
the system, but also to the proclivity of these materials to trap air 
bubbles; notably, thixotropic materials and dilatant materials exhibit 
increased or decreased viscosity, respectively, with different shear 
rates; since forces as applied when extruded, these behaviors can be 
used to explain the greater variability. These behaviors are further 

reinforced by Figure 7 which depicts how the majority of the noise 
occurred during the extrusion phase of the REP pulses. In retrospect, 
features derived over repeated REP pulses with different forces, 
such as PSNR, could be useful to improve the ability to discriminate 
between thixotropic and dilatant materials. For further analysis, we 
applied the classic material classification method, Random Forest 
[44], based on features extracted from REPs across all materials. 
The model successfully classified different materials based on their 
feature characteristics, achieving an accuracy score of up to 96% 
cross validation (see in Figure 6). 

Durability. First, to gauge the durability of the system in main-
taining signal quality, we performed periodic material sampling, 
with 30-day intervals between sessions. A PSNR value of 12 dB 
was observed. The REP (Figure 7) indicate that raw sensor data is 
subject to periodic drift; the distance when projected on PCA space 
still indicate that water, milk, and honey had a 88%, 79%, and 57% 
similarity with its earlier counterpart, respectively. 

When comparing the REP of water sampled with a lower motor 
power (Figure 7) versus the original and 30-day REPs, it appears 
that part of the noise can be attributed to degradation in the Pro-
grammable Air itself. This indicates that for REPs to be reliable, 
it is best to capture the REPs of reference solution in the same 
sensing session. The calibration process was simplified using a 
pressure sensor (SparkFun Qwiic MicroPressure Sensor), which is 
self-calibrating. Specifics regarding calibration can be found in the 
datasheet and user’s manual for the PA and pressure sensor [15]. 

We observed that while the system consistently produced similar 
REP signals, it experienced periodic drift over time, with a PSNR 
of 12 dB for samples collected over 30 days. Specifically, motor 
power degradation was observed, which could affect the system’s 
long-term stability. 

System Configurations. Two different system configurations were 
tested. The first involved using a larger air tube probe (8 mm - 3/8" 
ID); this would alter the shear rates that could be applied on a 
given sample – consequently, this caused a low PSNR of 19 dB and 
an outlier rate of 30.6%. This significant reduction highlights the 
need to adjust the system to achieve target shear rates. With the 
Programmable Air, the air tube probe needs to be smaller that (4 mm 
- 3/16" ID) with the max pump and vacuum power. The second used 
an inline check valve that plays a crucial role in controlling fluid 
flow and averting reverse flow that can damage electronic system. 
The poor signal quality (19 dB) indicate that standard "duckbill" 
check valves are incompatible with the technique since they impede 
airflow and therefore pressure readings. 

Calibration. To address system robustness and durability issues, 
we applied a calibration routine similar to the one described in 
Section 3.2 to evaluate system performance under different con-
figurations. This evaluation was conducted on five fluid materi-
als—milk, canola oil, honey, ketchup, and hot fudge—alongside 
water as a reference material. These materials were selected to 
capture a broad range of viscosity and flow behaviors, ensuring 
generalization across diverse material properties. The system was 
tested under two distinct sensing configurations: (1) a (2.4 mm -
3/32" ID) small tube and (2) a reduced power configuration with 
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Figure 5: Materials Studied using RheoMap. Materials list was chosen based on the range of viscosity fluid materials. Note that 
all materials that are not labeled as Newtonian are non-Newtonian. 
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Figure 6: Material Classification Confusion Matrix The confusion matrix for 26 materials base on the Random Forest classifier to 
identify different materials on their features of REPs. Using a stratified 70-30 train-test split, the classifier achieved a weighted 
F1-score of 0.958, with 5-fold cross-validation yielding 0.943 ± 0.015 (95% CI), demonstrating robust and consistent performance 
in identifying materials across diverse feature profiles. 

50% of pump and motor power. Using water as the reference mate-
rial, the system was calibrated, and cross-validation was performed 
on the extracted REP features for classification of the five fluid 
materials. The evaluation demonstrated an F1-weighted score of 
74.69% for the small tube configuration and 88.18% for the reduced 
power configuration, indicating the effectiveness of the calibration 
technique in maintaining classification performance under differ-
ent system conditions. These results suggest that our dataset of 

26 materials can be extended to other system configurations while 
maintaining classification accuracy. The calibration process enables 
the REP signals to adapt to system changes with minimal error, 
supporting the scalability and generalization of our approach across 
different tube diameters, power levels, and motor configurations. 
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Figure 7: Signal Quality Experiments A) Signal Quality (PSNR) of REP - Water (41 dB), Milk (48 dB), Jam (31 dB) and Oatmeal 
(32 dB); shaded regions indicate the 68% confidence interval for the signal. B) Depicts the retraction-extrusion pulse patterns 
for water and honey, with data collected at two distinct times 30 days apart, to evaluate the system’s robustness. C) Illustrates 
the retraction-extrusion pulse space for water, highlighting variations over time and power. 

5 RheoMap 
To facilitate the navigation, interpretation, and manipulation of 
rheological behaviors, we employ latent space cartography to gen-
erate a “map” that projects the rheological sensor vectors onto a 
more interpretable 2D embedding space. We outline the process of 
creating these maps, present the resulting visualizations derived 
from multiple datasets, and demonstrate how to interpret the maps 
to uncover meaningful insights into rheological behavior. 

5.1 Map Making Method 
Datasets. The original classification dataset was used to gener-

ate the primary RheoMap, categorizing each sample by its material 
class (n=26) and corresponding rheological class (m=6). 

Mapping Technique. The goal of map generation was to create 
an interpretable two-dimensional representation of fluid material 
behaviors that highlights clusters and patterns of rheological prop-
erties. To construct this embedding space, we tested several popular 
dimensionality reduction techniques, including Principal Compo-
nent Analysis (PCA), Linear Discriminant Analysis (LDA), Uniform 
Manifold Approximation and Projection (UMAP), and t-distributed 
stochastic neighbor embedding (t-SNE). For each technique, we re-
duced the dimensionality of the classification dataset and visualized 
the cluster contours of each rheological class using a kernel den-
sity estimation (KDE) contour plot. Specifically, the KDE contour 
method [62] estimates the probability density function of the data 
and uses Gaussian kernels to smooth the distribution and creates 
a continuous probability surface. Contour lines represent regions 
of equal probability density, effectively visualizing the spatial dis-
tribution and overlap of each rheological class in the latent space. 
The following metrics were used to assess cartographic utility of 
the dimensionality reduction techniques: 

(1) RheoClass and MatClass Preservation was used to measure 
how effectively the reduced-dimensional representation main-
tains the grouping of rheological classes or material classes. 
This metric is calculated by evaluating the consistency of 

corresponding class labels among the 𝑘-nearest neighbors 
in the reduced space. A higher score indicates that points 
belonging to the same class remain closely grouped. 

(2) Spearman’s Rank Correlation evaluated the monotonic rela-
tionship between pairwise distances in the high-dimensional 
and reduced spaces. This metric computes the correlation 
between ranked distances in both spaces, with higher values 
indicating that the relative ordering of distances is better 
preserved. 

(3) Separation Distance evaluated the degree of separation be-
tween clusters in the reduced space by calculating the mean 
pairwise distance between points from different classes. This 
mean inter-cluster distance is normalized by the maximum 
possible distance in the dataset. Higher separation distances 
reflect greater spatial segregation of clusters, reducing over-
lap and enhancing clarity between distinct classes. 

(4) Cluster Compactness measured the density of clusters in the 
reduced space by evaluating how tightly points within each 
rheological class are grouped. This is calculated by determin-
ing the average distance of points in each class to the class 
center, normalized by the number of points and the maxi-
mum pairwise distance in the dataset. Lower compactness 
scores indicate more dispersed clusters, while higher scores 
reflect tighter, more cohesive clusters, which are desirable 
for better interpretability. 

The results for each dimensionality reduction methods are de-
picted in Figure 8). For RheoClass Preservation and MatClass Preser-
vation, t-SNE achieves the highest scores (0.730 and 0.612, respec-
tively) with comparable results from UMAP. As expected, the Spear-
man’s Rank Correlation is best preserved by PCA (0.963), however 
t-SNE was able to preserve distance relationships better than the 
other methods (0.796). For Separation Distance, t-SNE (0.426) and 
UMAP (0.423) effectively segregate clusters, outperforming PCA 
and LDA. In Cluster Compactness, t-SNE achieves the densest clus-
ters (0.188), followed by UMAP. Overall, t-SNE was found to be 
the most effective for clustering and preserving global and local 
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Figure 8: Rheological Embedded Map A) Resulting embedding spaces from dimensionality reduction techniques Principal 
Component Analysis (PCA), Linear Discriminant Analysis (LDA), Uniform Manifold Approximation and Projection (UMAP), 
and t-distributed stochastic neighbor embedding (t-SNE); B) Performance of each embedding space as a cartographic map. 

relationships. It is used for all subsequent RheoMaps developed in 
this work. 

Map Rendering. Murray et al. spatial design principles [40] were 
applied to improve the map’s sensemaking qualities; the resulting 
t-SNE RheoMap is displayed in Figure 8. To create a sense of place, 
or recognizable and memorable spaces that users can easily identify 
and orient themselves, we first centered the embedding around 
the origin point. A grid-based coordinate system, akin to classic 
maps, were used to better reference and localize areas on the map. 
We also enabled the zoom in functionality that would preserve 
the reference grid system. Next, we applied reference materials 
as landmarks, using known fluids with well-known properties 
as anchor points on the map. We enabled the map to toggle be-
tween showing materials as points (centroid of the cluster), or as 
neighborhoods (contours that captures all members of the clus-
ter). Each rheological classes were assigned a unique hue based 
on the closest semiotic connection (e.g., ink → blue ink; gel → 
translucent green) that also distinguished it from the other classes. 
Each material of a rheological classes was assigned a unique marker 
and color within the hue family. To create waypoints or marks 
that help users understand where they are, where they have been, 
and where they can go next, we plotted routes (lines with colored 
segments) for samples that had ordinal relationships (e.g., samples 
of silicone at different curing times). 

5.2 Newtonian versus Non-Newtonian 
The most prominent distinction in rheological types is associated 
with Newton’s Law of Viscosity. Newtonian (N) materials, like 
water, have a constant viscosity regardless of the applied shear 
rate, meaning their resistance to flow remains unchanged whether 
stirred slowly or quickly. In contrast, Non-Newtonian (NN) materi-
als change viscosity based on the force or speed applied. Depending 
on the type, these fluids can thin out, thicken, or exhibit a combi-
nation of behaviors, such as honey that becomes less viscous when 
stirred faster or cornstarch-water mixtures that thicken upon quick 
agitation. 

We evaluated the ability of RheoMap for mapping different fluid 
materials in rheological embedding space, including Newtonian 
fluids (e.g., water, milk, india inks) (m=5, n=22) and NN fluids 
(e.g., honey, ketchup, cornstarch, pottery plaster) m=21, n=210. As 
shown in Figure 9, both rheological classes occupy distinct regions 
of the RheoMap. Newtonian fluids such as water, milk, and canola 
oil span the B5:D5 column. In contrast, NN fluids exhibited two 
isolated band-shaped clusters: a smaller D-band and a larger F-band. 

The small D-band, spanning D2:D4 notably overlapped with the 
Newtonian region, which was expected since these fluids are sus-
pended in water, such as pre-made clay, pottery plaster, and corn-
starch. The larger F-band of NN fluids, extends from F2:F4 and 
moved up to E5:D6. Similar to Newtonian behavior, the less viscous 
fluids are localized in the upper region of the band (D6), such as 
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Figure 9: Newtonian versus Non-Newtonian RheoMap. The map of Newtonian (e.g., water, milk, india inks; m=5; n=22) and 
Non-Newtonian fluids (e.g., honey, ketchup, cornstarch, pottery plaster; m=21; n=210) 

egg white, corn syrup, and lotion. Notably, honey formed a distinct 
cluster in E7, positioned close to other NN fluids, likely due to its 
unique ability to mimic Newtonian behavior at the measured tem-
perature, while still exhibiting traits that set it apart, such as its 
lack of particulate structures commonly found in other NN fluids 
like ketchup or mayonnaise. These characteristics reflect honey’s 
homogeneous molecular structure and sensitivity to external forces, 
distinguishing it within the broader group of complex fluids. The 
RheoMap is effective in distinguishing between Newtonian and NN 
fluids from the t-SNE coordinates alone – a decision tree classifier, 
trained on t-SNE-transformed data, achieved a mean weighted F1 
score of 0.98 using stratified k-fold cross-validation (k=5). 

5.3 Viscosity 
Viscosity is one of the most widely studied and commonly used 
rheological properties. To examine how effectively RheoMap dis-
cerns viscosity, we clustered materials into three distinct rheological 
classes based on their viscosity: inks (e.g., water, milk, alcohol; m=5), 
syrups (e.g., corn syrup, egg white; m=3), and thick substances (e.g., 
honey, silicone; m=2). These materials were selected from majority 
from food-materials based on their well know viscosity values from 
food and materials science. 

From Figure 10, the three sets of materials were distinctly rep-
resented. Ink-like materials were primarily located in the higher 
region, spanning B5:C5 and D4, reflecting their low viscosity prop-
erties and Newtonian behavior. Syrup-like materials (corn syrup 
and canola oil) were more distributed in D5:D6 and E5, correspond-
ing to their medium viscosity values. Egg white was concentrated 
in E5 and G4, indicating its noisy signals, as egg white could create 
bubbles by the movement forces of RheoMap. Notably, honey and 

silicone are located in the lower region, with honey at E6 and F5 and 
small amounts of silicone at C4, demonstrating their higher viscosity 
values. Additionally, these two materials exhibit Non-Newtonian 
behavior, not due to changes in viscosity from shear-force but 
rather from temperature and time factors. These behaviors may 
require further study and improvements in future systems. How-
ever, RheoMap demonstrated a clear distinction among the three 
types of materials—ink, syrup, and thick-like—corresponding to 
their respective increasing viscosity; more generally, these findings 
indicate that the A-H axis (t-SNE component 2) can be interpreted 
as encoding viscosity. 

5.4 Gels and Pastes 
Non-Newtonian (NN) materials are further distinguished by their 
behaviors over time. Time-dependent NNs (TD-NNs) exhibit a 
change in viscosity that evolves over time, whereas time-independent 
NNs (TI-NNs) depend only on the applied shear stress. Many mod-
ern paints are thixotropic, similar to pastes, meaning they become 
less viscous when stirred or shaken and return to their original, 
thicker state when at rest. When painting a wall for example, this 
allows the paint to rolled on and easily spread, but thickens once 
left to dry (over a period of time) preventing unsightly drips. In 
contrast, time-independent NNs, such as (Bingham plastic), as we 
categorized as gels, behave differently (gelatin and silicone). They 
require a certain force to flow out of a container, but revert to their 
original viscosity once the force is removed (yield stress behavior). 

Using RheoMap, we visualized gels (e.g., gelatin, lotion, yogurt; 
m=4; n=113) and pastes (e.g., ketchup, shampoo; m=7; n=137) in the 
rheological embedding space. The t-SNE analysis revealed a shared 
cluster encompassing both gel-like and paste-like materials, with 
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Figure 10: Viscosity RheoMap The map of materials categorized by viscosity, ranging from inks (e.g., water, milk, India ink; 
m=5) to syrups (e.g., canola oil, corn syrup, egg white; m=3) to thick materials (e.g., honey, silicone; m=2). A decision tree 
classifier, trained on t-SNE-transformed data, achieved a mean weighted F1 score of 0.99 using stratified k-fold cross-validation 
(k=5). 

each material type occupying distinct locations within the cluster 
(Figure 11). 

We observed that paste-like materials are located in the outer con-
tour of the rheological embedding, characterized by shear-thinning 
and solid-like behavior. Variations in particle concentration, struc-
ture, and flow resistance within this group resulted in a slight spread 
across the F2:F5 and F5:D6 bands. In contrast, gel-like materials 
cluster tightly within the inner contour, reflecting their viscoelastic 
properties. These materials demonstrate a balance of liquid-like flow 
and solid-like deformation depending on applied force conditions. 

The tight clustering of gel-like materials around F4 suggests 
a structured network that traps liquid, maintaining firmness un-
til disturbed. For example, gelatin retains its form until a force 
disrupts its network. Gel-like materials often behave as Bingham 
plastics, requiring a yield stress to initiate flow, and may exhibit 
thixotropy—viscosity decreases under shear and gradually recovers 
when shear is removed. This time-dependent behavior is exempli-
fied by lotion, which appears firm at rest, flows under shear (e.g., 
rubbing on skin), and recovers viscosity when the shear ceases. 

In contrast, paste-like materials, while similarly solid-like, exhibit 
time-independent behavior. Their viscosity decreases under applied 
shear but recovers immediately once the stress is removed. These 

distinctions place paste-like materials in the outer contour of the 
embedding. 

Cornstarch presented an interesting outlier, occupying the up-
per region of D4. Its behavior depends significantly on the ratio 
of cornstarch to water, allowing it to transition between gel-like 
and paste-like states. In this study, a 1:1 ratio resulted in a thick 
fluid that primarily exhibited paste-like behavior but also shared 
characteristics with syrup-like or slurry-like materials. 

Despite these nuanced behaviors, our approach achieved an F1-
weighted score of up to 88% (t-SNE decision tree; r=2; stratified 
k-fold cross-validation; k=5), demonstrating the effectiveness of 
RheoMap in distinguishing between gel-like and paste-like materi-
als. This differentiation highlights the capability of the embedding 
space to capture both shared and unique rheological properties of 
complex fluids. 

5.5 Particle-Suspension (Slurries) 
Another important consideration in the rheological characteristics 
of fluids is particle size and the uniformity of the mixture, which 
distinguishes fine particle slurries and large chunky particle slur-
ries. Slurries are generally NN fluids, where viscosity decreases as 
shear stress increases, and consist of solid particles suspended in a 
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Figure 11: Gels versus Pastes. The t-SNE rheological embedded area of gels (e.g., gelatin, lotion, yogurt; m=4; n=113) and pastes 
fluid materials (e.g., ketchup, shampoo; m=7; n=137). A decision tree classifier, trained on t-SNE-transformed data, achieved a 
mean weighted F1 score of 0.88 using stratified k-fold cross-validation (k=5). 

non-uniform liquid medium. The size and concentration of these 
suspended particles significantly influence flow behavior, altering 
the viscous response and shear stress characteristics of the mixture. 

Figure 12 illustrates distinct clusters of slurry types, categorized 
based on their viscous medium and particle size. For example, fine 
particle slurries (e.g., clay, pottery plaster; m=4, n=210), formed a 
tight cluster in the D3:D4 region, reflecting their rheological prop-
erties as small-particle, low-viscosity, water-based mixtures. In 
contrast, chunk particle slurries (e.g., tomato sauce and peanut but-
ter; m=2; n=112) clustered in the lower right region (E5 and F4), 
indicative of higher viscosity and larger particle sizes. Both clusters 
exhibited shear-thinning behavior, a hallmark of NN fluids. Notably, 
tomato sauce and peanut butter exhibited some overlap within the 
F-band, likely due to noisy signals arising from sampling different 
regions of the non-homogeneous tomato sauce. This highlights an 
opportunity to enhance the REP signal by incorporating feature 
fusion – extracting and synthesizing features over multiple samples 
– to better capture rheological qualities that differ in heterogeneous 
materials. 

In contrast, large chunky particle slurries primarily clustered in 
the lower region (F3:F4), reflecting their higher viscosity, larger 
particles, and chunkiness, which made them clearly distinguish-
able from other materials. Generally, an increase in particle size 
in fluids correlates with higher viscosity—a trend that RheoMap 

effectively identified, achieving a weighted F1 score of 95% (t-SNE 
decision tree; r=2; stratified k-fold cross-validation; k=5). However, 
challenges arise when particle size changes while viscosity remains 
constant or in extreme cases involving micro- or larger particles. 
Such variations can produce complex fluid behaviors that test the 
system’s limits. Additionally, particle size detection in RheoMap is 
constrained by the dimensions of the tube and the system’s pump 
power. Addressing these limitations may require future iterations 
with stronger pumps and larger tubes. More significantly, analyzing 
complex fluids, particularly those involving micro- to nanoscale 
particles, will necessitate further intensive study and advanced 
techniques. 

5.6 Concentration: Corn Syrup-Water 
Concentration is a critical property to measure because it can influ-
ence a substance’s various physical and chemical characteristics. 

A concentration dataset of corn syrup-water solutions, com-
prising 586 samples with corn syrup content ranging from 10% to 
100% by mass, was developed. Corn syrup was chosen due to its 
widespread use as a viscosity benchmark. This dataset was used 
to create a specialized RheoMap, applying t-SNE embedding ex-
clusively on the concentration dataset, to enable tracking of fluid 
composition. This approach was designed to capture and highlight 
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Figure 12: Particle-Suspension RheoMap. The rheological embedded area of slurries (heterogeneous) and non-slurries (ho-
mogenous) fluids based on two group: slurries (eg. tomato sauce, industrial slip casting clay, peanut butter; m=4; n=210) and 
non-slurries (jam and oatmeal; m=2; n=112) 

more minute changes in rheological properties across varying con-
centrations. 

In this experiment, the solute (corn syrup) and the solvent (water) 
exhibited markedly different rheological profiles (NN and Newto-
nian, respectively). As established in our rheology experiments, 
this distinction is prominently captured by the RheoMap (Figure 9). 
We anticipate that the sensitivity of the retraction-extrusion pulses 
might be affected if the components of mixtures or solutions exhibit 
similar rheological characteristics (e.g., Newtonian - Newtonian 
solutions). The concentration route on the Rheomap (Figure 13A) 
illustrates the progression of corn syrup concentration, with lower 
concentrations mapped to higher regions , starting from B5 moving 
down to C-band as the corn syrup ratio increases. Higher concentra-
tions shifted downward into F-band to G-band, ultimately ending 
at F6 . The clear separation of regions reflects the transition from 
water-like (Newtonian) behavior at lower ratios to thicker, non-
Newtonian behavior at higher corn syrup ratios. This sensitivity 
to rheological changes allows for an accurate representation of 
viscosity as a function of concentration and provides predictive 
capability in understanding rheological behavior. understanding 
the thresholds for achieving equivalent rheological behaviors (e.g., 
how much water to add before the material no longer behaves as a 
paste). 

Due to the more complex spatial clusters on the t-SNE RheoMap, 
we trained a decision tree classfier on the LDA dimensionality-
reduced data (3 discriminants, 97.76% variance explained) in con-
trast to prior t-SNE classifiers; the classifier was validated using 
k-fold cross-validation (k=10). The classifier confusion matrices are 
depicted in Figure 13B. The model was able to distinguish between 
the ten concentration classes (each corresponding to differences 
in 10% concentration) with 83.33% accuracy. This indicates that 
RheoMap could provide a robust method for visualizing and predict-
ing fluid concentrations, especially in situations where solutions 
change over time from evaporation. 

5.7 Time Dynamic of Silicone and Gelatin 
Fluids often exhibit changes in behavior and properties during the 
factor of time. These changes can result from alterations in their 
components, such as drying or due to chemical transformations like 
curing or setting. To understand the temporal sensitivity of REP, 
we examined the ability for the RheoMap system to distinguish 
such fluid shifts. Two time-shift datasets were collected to track 
dynamic material changes. For silicone (EcoFlex 00-50; 18 minute 
pot time), samples were taken every 3 seconds over a 50-minute 
cure at room temperature. The resulting dataset was grouped into 
the 6 stages of 8-minute intervals. For gelatin (unflavored), samples 
were taken hourly over a 2–3 hour setting period in a 40 °F (4.4 
°C) refrigerator. These datasets were used to produce specialized 
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Figure 13: Concentration Sensitivity. A) The route map of corn syrup-water concentrations (by volume) with 10% increments in 
latent space; with starting at 10% and destination at 100% . B) The heatmap prediction with 83.33% accuracy. The confusion 
matrices illustrate true versus predicted concentration ratio (%) for classifications, C) retraction-extrusion pulses for collected 
samples. 

Figure 14: RheoMap of Silicone Curing Sensitivity. A) The route curing map of EcoFlex-50 silicone curing over time, divided 
into 6 incremental curing stages (8 minutes per stage) at a rate of 20 samples per minute in latent space. The process starts at 8 
minutes and ends at 48 minutes with centroid data line. B) The heatmap predicts the curing time for each stage with 76.95% 𝑅 2 

accuracy. Note that EcoFlex-50 has an 18-minute pot time at room temperature. The confusion matrices illustrate true versus 
predicted classifications. 
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RheoMap that reveal material property transitions during curing 
and setting. 

A specialized RheoMap was developed applying t-SNE embed-
ding exclusively on the respective time-shift datasets to improve the 
granularity of the map; we added routes for the respective curing 
and setting processes. 

The resulting RheoMap clusters curing stages into distinct tempo-
rally interconnected regions (Figure 14A). During the early curing 
stages (8, 16, and 24 minutes), the silicone clustered in the lower-left 
region from D5:D6 and E5:E7, exhibiting gel-like behavior with 
lower viscosity and yield stress, with the curing route (centroid 
datapoints) moving in E6:E5. This is expected behavior of silicone 
where slowly curing in beginning, soft and flowable under applied 
force but firms up when undisturbed (gels behavior). The later 
stages (32, 40, and 48 minutes) appeared in the upper leftward, sug-
gests paste-like behavior, and moving rapidly from F4:E4 and end 
at D3:C4; indicates an increase in viscosity and curing rates. This is 
reflective of silicone curing faster during later cross-linking stages. 
Since the curing rate can be influenced by environmental factors 
(temperature, humidity, etc.), this presents a potential improvement 
area for RheoMap to reveal factors like temperature or humidity 
through the curing rate, enabling customized curing route maps 
for silicone based on different environments. 

Also, we trained a decision tree classifier on the LDA dimen-
sionality reduced data (3 discriminants, 97.76% variance explained; 
k-fold cross-validation; k=10) to classify the curing stage of sili-
cone. The classifier performed with 54.62% accuracy. The confusion 
matrix indicates that adjacent stages account for the bulk of mis-
classification errors (Figure 14B). A regression model trained on the 
curing time of silicone achieved an 𝑅 2 score of 76.95%. While not 
at the level of a scientific instrument, the REP pulses demonstrate 
enough granularity to achieve high-level characterization of curing 
stages. 

For gelatin, we tracked four different curing times in 1-hour incre-
ments. In Figure 15 revealed transitions from gel-like to paste-like 
behavior, moving from lower region E7 to higher regions D4 in the 
map. However, unlike silicone, which was sampled continuously, 
gelatin indicates that the setting process is largely concentrated 
to the first hour. Despite this, the decision tree classifer on gelatin 
setting stage achieved a score of an F1-weighted score of 74% (r=3; 
stratified k-fold cross-validation; k=5). The map and confusion ma-
trix (Figure 15 show that overlapping clusters and misclassification 
occurred when the gelatin was already set, still indicating a mate-
rial state changes. These findings indicate that RheoMap can still 
function to detect state changes when not continuously sampling. 

6 Exemplars 
Exemplars serve as powerful tools to contextualize the diverse 
applications of a system, showcasing its potential in novel and 
innovative ways [23]. To motivate the utility of RheoMap within 
the HCI community, we describe a series of exemplars through a 
vignettes to illustrate the real-world use cases that can leverage 
RheoMaps. 

6.1 Localization 
New smart materials often need to be adapted for different applica-
tions. By displaying landmarks representing functional referents 
(e.g., gels, pastes, inks) on the map, makers can see how close their 
unknown material is to these established categories. Moreover, 
users often need a starting point to locate where they are and ori-
entation in the embedded space. This where our tool could helps as 
localization and navigation fluids materials through different type 
of fluids in rheological embedded space. 

For instance, we analyzed a sample of Liquid Crystal (LC) ma-
terial (SFSX) that had been in storage for nearly a year, raising 
questions about possible degradation in its material properties or 
its position in the embedded space relative to other fluids, as no one 
remembered its characteristics anymore. As a paint medium, the 
behavior of LC is largely determined by its binder – the component 
that enables it to be worked and applied in specific ways. 

Our lab environment revealed potential relatives: a vial of india 
ink, a bottle of fluid medium, a jar of screen-printing paint, and a 
tube of heavy body acrylic paint. By finding the closest material 
relative, the Rheomap can be used to determine the types of tools 
and techniques developed by relative material practices to handle, 
coerce, and co-create with similar materials. On the RheoMap, we 
projected potential relatives as landmarks. We then projected a 
sample of the liquid crystal. 

16). 
Experimentally, we tested small amounts of LC using our sens-

ing system to collect samples and map them on the RheoMap. We 
discovered that LC was centered in C4 (Figure 16), similar to fluid 
acrylic paint, and positioned higher compared to ink in D4. The LC 
was also distanced from the region of water (B5:E5) and alcohol in 
lower D4, clearly highlighting differences in fluid characteristics, as 
LC was thicker like thick or syrup-like; also more complex com-
pared to water, alcohol, and inks. Notably, screen printing ink and 
heavy acrylic were thicker than all the other materials, shifting to 
D3, indicating their high viscosity. This also suggests that adding 
rheological modifiers such as CMC, xanthan gum, or cornstarch 
would shift the LC to these regions, providing guidance for recipe 
or map navigation within the embedded latent space. 

Through this experiment, we documented these as potential flu-
ids material to aid in navigating the rheological space and achieving 
desired rheological behaviors. We found that RheoMap could sup-
port the testing, recording, and annotating recipes using various 
rheological modifiers (e.g., thickeners, stabilizers, wetting agents). 
This approach facilitated understanding whether LC could be piped 
from an inkjet head, dispersed through an atomizer, or manipulated 
with a palette knife. This further supported material polymorphism, 
allowing for greater flexibility in adapting materials into differ-
ent forms to enhance their compatibility with a wider range of 
application techniques. 

6.2 Rheofencing 
To help makers monitor material consistency over time and ensure 
expected behavior, we introduce a geofencing-inspired interaction 
called rheofencing. By leveraging REP readings from an established 
reference or ground truth, RheoMaps can track whether materials 



CHI ’25, April 26–May 01, 2025, Yokohama, Japan Vuong et al. 

Figure 15: RheoMap of Gelatin Curing Sensitivity. A) The route curing map of gelatin curing over time, divided into 4 incremental 
curing stages (60 minutes per stage) in latent space. The map starts at initial mixing gelatin with hot water and ends at 3 hours 
later for curing. B) Details data of four gelatin curing stages with 0, 1 hour, 2 hour, and 3 hour respectively 

Figure 16: Where in the RheoWorld is Liquid Crystal? A Liquid Crystal material is compared against four common mediums: 
heavy body acrylic, fluid medium (used as a ink-paint), screen printing ink, and inkjet printer ink. A) The Retraction-Extrusion 
Plot shows the rheological profile of each viscous medium. B) Illustration of the experiment, collecting data from RheoMap to 
analyze and provide feedback through a phone app. C) Mapping Liquid Crystal in rheological embedded space indicates that it 
has similar rheological characteristics to inks and viscous materials. Based on collected samples through the app, RheoMap 
showed currently located material and suggest directions to reach the desired destination based on different fluid types, such 
as inks, gels, pastes, and slurries. 

deviate during curing or setting processes. For instance, a com-
mon issue occurs when platinum-cure silicone is mixed with a 
wooden implement – the natural oils in the wood inhibit proper 
curing. Using reference readings from a successful cure, RheoMaps 
can assess whether a new curing routine aligns with the expected 
neighborhoods corresponding to different curing or setting stages. 
When monitoring a wood-mixed silicone, RheoMaps detected sig-
nificant variations during curing stage 4. The contour maps for this 
stage showed reduced overlap and greater distinction compared to 
the reference silicone, indicating a deviation in the curing process 
(Figure 17). 

Rheofencing enables early detection of deviations and integrates 
with end-user programming paradigms like trigger-action program-
ming [58] to automate responses such as logging, SMS notifications, 
or alarms as materials transition through the map. For example, 
it can trigger alerts (e.g., "Curing Error") to warn makers of po-
tential or ongoing material failures, enhancing temporal visibility 
and tracking of material interactions. Beyond monitoring, these 
virtual fences can also be employed to detect material failure more 
rapidly and adapt to challenging conditions, such as changes in 
temperature, humidity, or contamination. 
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I need cured 
silicone.

Target material?

I’ll monitor.

Stage 1  

Stage 2  

 It looks like your 
material deviated.

RheoMap

Figure 17: Curing Silicone with Rheofences Drawing from software debugging methods, we use the rheological embedding 
space to place makers in a rheological map that allows users to apply “geofences” for monitoring material workflows such as 
curing silicone. A) Showing message for monitoring wooden stirrer silicone curing overtime. B-E) Top row shows air pressure 
dynamics over time for curing stages. Bottom row displays t-SNE for the same curing stages, highlighting the distinctiveness of 
data patterns for each stirrer type. 

Figure 18: Biofilament Neighborhood Mapping A recipe for a biofilament from spent coffee grounds is replicated. A) A silicone 
piping pen was used to conduct an extrusion test to understand 3D printing behaviors. B) Extrusion tests for each SCG recipe 
based on recipe from Rivera et al. [48]; by adding 35g of water, an additional 40g of water (added in two 20g increments), and 2g 
of CMC, C) The REPs for each samples display in postive-space and negative space compare to reference: Rivera’s SCG recipe 
and peanut butter, D) Mapping SCG in rheological embedded space. Based on collected samples, RheoMap showed currently 
located material and neighborhood boundaries between positive and negative space . Contours on the map are thresholded 
to show density from 10% to 100%, highlighting the most populated parts of the space. Based on addition mixing material, 
RheoMap showed. 

6.3 Neighborhood Mapping 
RheoMaps present materials not as distinct points, but as neighbor-
hoods. These neighborhoods, more generally, can be extended to 
represent positive spaces where a material meets desired charac-
teristics, while negative spaces denote regions where materials 
fail to achieve these properties, resulting in unusable or unstable 
outcomes. A recipe, in this framework, can be seen as a single point 
within the positive space. However, deviations are often inevitable 
when following or modifying recipes, leading to uncertainty about 
whether a new formulation remains within the positive space or 
drifts into the negative space. This uncertainty presents challenges 
for customizing and optimizing material formulations. 

We demonstrate how RheoMaps can chart a broader neighbor-
hood of fluid materials, clarifying the boundaries between positive 

and negative spaces. This enables flexibility in exploring and cus-
tomizing recipes while improving replicability by identifying viable 
variations that maintain desired properties. For this study, we se-
lected a biofilament recipe from Rivera et al. [48], which offers a 
sustainable alternative to thermoplastics by using readily available 
materials like spent coffee grounds (SCG) and viscosity modifiers 
(CMC, xanthan gum) to create a deposition-extrudable material 
with a "peanut-butter-like consistency." 

In this experiment, we replicated the original SCG biofilament 
recipe and produced four deviations by progressively adding wa-
ter until the mixture failed, then reintroducing CMC to restore 
a paste-like consistency. Each variation was tested using manual 
extrusion tests with a 10 mm nozzle silicone injector syringe to 
assess extrusion behavior (Figure Figure 18A). The results were 
categorized into positive and negative spaces: positive spaces in-
cluded formulations closer to the original recipe, exhibiting peanut 
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butter-like consistency and extrudability, while negative spaces 
represented formulations that deviated further, resulting in non-
extrudable biofilaments. 

Using RheoMap to map recipe variations (Figure 18C), we ob-
served shifts in positive and negative spaces. Positive spaces moved 
leftward on the map, from E5 to E4, while negative spaces shifted 
rightward, remaining outside the positive zone. This highlighted 
RheoMap’s ability to distinguish subtle changes in material be-
havior and assess extrudability limits. Through this exploration, 
RheoMap identified how far deviations from the original recipe 
could maintain biofilament extrudability and revealed the signifi-
cant role of xanthan gum and CMC in the mixture. Fine-tuning the 
recipe showed that adding CMC unexpectedly reduced viscosity, 
demonstrating the value of the map’s relational insights. Expand-
ing RheoMaps to include more recipe variations could provide a 
reliable reference for extrudable materials, reducing costly and time-
intensive tests. Additionally, RheoMaps could track material shifts 
over time (e.g., due to drying) and guide adjustments needed to 
restore variants to the positive space, supporting iterative material 
optimization. 

7 Discussion 

7.1 Map-Centered Exploration 
Material development often relies on tracking variations, which 
frequently evolve from established recipes. For example, in creating 
a support bath for 3D-printed self-standing structures made from 
chocolate, jelly, alginate, and puff pastry, Yang et al. [64] first repli-
cated an existing hydrogel recipe, adapting it for use with gelatin 
and creating a variant with carbopol. For that, it is important that 
users can track, follow, and annotate the recipe, allowing them to 
compare their progress more accurately and make adjustments if 
things go off track, making it easier to learn and experiment. We 
see that the RheoMap could allows makers to set a destination 
in the latent space representing a material reference point. When 
following a recipe, makers can monitor and compare their progress 
against the original recipe author’s breakpoints, or readings taken 
at specific steps in the recipe. When designing or exploring a new 
material, makers can document their progress step-by-step through 
routes, or specify detours that split the developing recipe into two 
branches (version control) to facilitate systematic experimentation. 

Moreover, the embedding sensor vector technique we used can 
be applied in various other fields beyond rheology. For instance, we 
employed air pressure as a means to gather data, but this approach 
could be extended to biomaterials, where parameters like pH, color, 
and turbidity are crucial. By embedding these measurements, one 
could generate maps that track changes across different phases 
of the cultivation or fabrication cycle. These maps would help 
highlight neighborhoods where biomaterials are either thriving or 
deteriorating, offering valuable insights into their health over time. 

Additionally, the technique could be used to monitor and verify 
the state of biomaterials. For example, by identifying regions in the 
map where materials are dying, alerts could be sent directly to a 
phone, notifying users to take action. 

For more dynamic, real-time feedback, the use of RheoMaps 
could provide visual and multi-modal feedback based on the map’s 
data. One could generate spatial audio cues that allow users to 

"listen" to their position within the map, helping them understand 
where they are in relation to the overall space. This method would 
enhance the usability and engagement of the embedding maps, 
offering an interactive way to monitor and analyze the materials in 
real time. 

7.2 Comparison to Traditional Viscosity 
Methods 

Range: Our experiments demonstrated the capacity for reliable and 
replicable experimentation but also enabled convenient monitoring 
and controlling of materials. RheoMap successfully captured REP 
for various materials, demonstrating its potential to distinguish 
between multi-material fluid mixtures from Newtonian to NN (0.5 
cps to 250000 cps) which could hold promise for applications in 
fields such as HFI and inkjet printing. Khot et al. [21] described 
how printing chocolate requires care and attention to maintain the 
quality of food and its printable characteristics; under tempered 
chocolate could lead to watery prints. Lee et al. [24] also explored 
the internal structure of chocolate using 3D printing. Similarly, 
Khan et al. [20] noted that in addition to nozzle and surface, ink 
viscosity is one of the most important factors in multi-ink functional 
printing. The repeatability of our sensing method offers the ability 
to continually monitor and track the quality of such materials before 
and during the fabrication process. 

Material Limits: Our method heavily relies on reference ma-
terials for our sensitivity to be effective and improve accuracy. 
Furthermore, the accuracy of MEMS pressure sensors and the effec-
tiveness of air-pump power are also constrained. We found that our 
air pump did not have sufficient force to distinguish dilatants effec-
tively. This leads to reduced accuracy and challenges in handling 
extreme materials, such as those with high viscosity or chunky con-
sistency like peanut butter, hot fudge and other dilatant materials, 
which compared to traditional viscosity methods that typically em-
ploy cylinders or metal pistols. However, tube size and air pressure 
force is the most critical parameter to obtaining a clean and reliable 
signal. 

Rheological Tuning: RheoMap device was effective in distin-
guishing between various concentrations of corn syrup and more 
generally to solutions where two different rheological types are 
present. Since water and oil (Newtonian) are often used as solvents, 
a wide variety of solutions fall under this purview. For the many 
HCI applications that leverage conductive ink (e.g., [65]), dialing in 
the flow of the material impacts its ability to be handled as a spray, 
paint, or 3D printed material. 

Moreover, despite its success in differentiating between various 
concentrations of material, such as corn syrup solutions, our sys-
tem demonstrated limitations when trying to distinguish between 
water (1 cPs) and other Newtonian materials like milk (3 cPs). This 
could be attributed to similarities in their behavior under identical 
environmental conditions or limitations within our current sensor 
and algorithm setup; coupling classic chromatography techniques 
could be used to help disambiguate similar rheologies. Although 
with our current experiments, we the implementation of this tech-
nology presents certain challenges and requires further research, it 
has suggested effective with potential applications across various 
rheological substances and scenarios. 
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Extendability and Portability: Even though the rheological 
sensing demonstrates significant potential, it still requires custom 
hardware. We used off-the-shelf components to mitigate this; how-
ever, some of these components may become unavailable over time 
(e.g., Programmable Air). To improve extendability and portability, 
we introduced a calibration routine that uses water as a reference 
to adjust signals based on deviations in system configuration, such 
as motor power, air tube size, and sensor type, each demonstrating 
around 80% accuracy. This indicates that the calibration routine can 
facilitate the use of our material datasets to initialize other systems’ 
RheoMap while supporting the creation of specialized RheoMap 
for more precise and granular applications. 

Extending the Sensing Routine: We confirmed that [45] strat-
egy of alternating between retraction and expulsion provides a 
rich rheological profile, however some rheological types remain 
out of reach. Distinguishing more complex rheological properties 
gels (time-dependent) and pastes (time-independence) in NN fluid 
requires incorporating non-linear forces into the RheoMap sensing 
routine; we view this additional distinction helping HCI researchers 
further tune the user-friendliness of materials. Similarly, difficulties 
were encountered when dealing with inks, gels, pastes, and slurries 
materials within Newtonina and NN. However, in reality, depend-
ing on the aspect that users measure—such as time, shear rate, or 
particle size; fluids can belong to either one or multiple categories. 

Furthermore, fluid materials are mixed and the mixing technique, 
whether it be stirring, shaking, or using an ultrasonic homegenizer, 
are essential to creating new materials. Our classification model 
leveraged features gathered from an individual pulse, but when 
examining cycle level, such as PSNR, or from multi-site sampling 
shows potential increase the detection power. Our experiments 
with foam (whipped egg whites) showed distinct and more varied 
REP pulses (20% outlier rate), indicating a need to expand how REP 
features are encoded into machine learning models. 

Cost and Access: We prioritized the use of off-the-shelf com-
ponents such as the Programmable Air to encourage the adoption 
of REP sensing 1 . While this places the cost of the toolkit at $200 
USD, we see additional potential to make RheoMap low-power by 
using everyday syringes retrofitted with an air sensor to manually 
conduct the REP routine and further extend the ability to sense 
materials everywhere. Furthermore, as mentioned in the calibra-
tion section, our calibration routine is easy to use and accessible. 
Users could leverage our existing library in open source, which 
enables quick calibration using water as a reference material. We 
demonstrated how specialized rheology maps could be generated 
using a cycling routine to capture temporal data, offering a more 
comprehensive understanding of the material’s rheological proper-
ties. This approach provides flexibility in both cost and precision, 
supporting a broad range of sensing applications. 

7.3 Material Sensing in HCI 
In ceramic and clay making, when formulating materials for applica-
tions like slip casting or for fluid-like substances such as silicone or 
carbon filament, it’s imperative to understand their microstructure 
and particle properties. RheoMap has showcased its proficiency in 

1Open-source with provide software and firmware files for RheoMap: 
https://github.com/The-Hybrid-Atelier/RheoMap 

distinguishing between various slurries and non-slurries. However, 
the system encounters difficulties when trying to analysis strong 
and thick fluids or large particles. It also could not reavel further 
details characteristic of slurries and non-slurries, since some com-
plex fluid could also Newtonian and NN, gels and pastes in both 
slurries and non-slurries type. Moreover, the small or larger mi-
crostructures, and even color, would be important fluid literacy, 
since RheoMap fail to detect. Moreover, to obtain accurate data 
during testing, stirring is often essential. This intricacy underscores 
a notable challenge for RheoMap which could be resolved by ap-
plying variable forces to the material versus when extruded. 

The major challenges are in comprehending how fluid materials 
respond to various stresses, environmental factors, manipulation, 
time and costly; requires specialized equipment to conduct mea-
surements. Generally, measuring viscosity is a common method for 
analyzing its properties like rheology, concentration, curing time, 
and extrudability. However, while exploring new fluid materials 
is often a slow and difficult process. The workflows vary widely, 
from fast-paced to day-long processes, adding another layer of com-
plexity to manage fluid material behaviors. For example, printing 
edible films made from gelatin or starch required dissolving the 
material, reforming it as a gel, curing it for 5 minutes, and drying 
it for 12-18 hours [59]. Moreover, the dynamic qualities of mate-
rials often inhibit their adoption; a gelatin bath must be prepared 
in large batches to be worth the effort; even then, it can only be 
preserved for only 7 days [64]. Even though some practitioners 
have adopted scientific methods, these remain largely inaccessible. 
As a result, they lose the opportunity to innovate when working 
with “blackboxed” materials. With our system, we believe RheoMap 
could shine in this by annotating recipes and tutorials with way-
points, enabling a more accessible, open-source approach to fluid 
materials for replicating processes, testing, and debugging fluids. 
Furthermore, by integrating open-source resources, we envision 
enhanced collaboration through experimentation, innovation, and 
knowledge sharing, supported by DIY repositories and tutorials. 

Lastly, material tuning, which involves adjusting a material’s 
composition to produce a specific mixture, can significantly alter 
its rheological properties. While RheoMap shows promise in iden-
tifying and classifying a broad spectrum of materials to assist this 
process, it still faces challenges. For instance, distinguishing be-
tween closely similar materials like mayo and ketchup remains 
a hurdle. Also, during our tests on the behavior of foams using 
whipped egg white, distinct REPs were observed. However, these 
samples presented a 20% outlier rate. This result was expected 
due to the fluid-air composition of foams, causing them to behave 
differently from other fluids. 

Material Verification and Exploration Toolkits: Fluid mate-
rials offer an extremely versatile design space, and consequently 
an even larger error space. We demonstrated RheoMap capacity to 
identify the curing state of materials such as silicone and gelatin. 
Silicone’s curing time can be reduced by curing at a higher temper-
ature, but its curing can also be inhibited by simply using a wooden 
implement to stir the mixture (platinum cure) [38]. When working 
with a new material, these unknowns can prohibit material explo-
ration. The RheoMap could assist exploring new composites and 
fabrication techniques by verifying intermediate stages of these 

https://github.com/The-Hybrid-Atelier/RheoMap


CHI ’25, April 26–May 01, 2025, Yokohama, Japan Vuong et al. 

materials’ production and better document creative process with an-
notated prototypes. We viewed this freedom to play and experiment 
with material properties as a critical factor for enabling creativity 
in material practices. 

Smart Materials: The materials sampled in our experiments 
were drawn from traditional material practices, however there 
is also the potential to use the REP method to characterize how 
smart materials respond to electro-magnetic, chemical, and me-
chanical stimulation. For instance, Jansen [18] found that magneto-
rheological fluid (MR-fluid) can change viscosity when exposed to 
a magnetic field, but the change is invisible and can only be felt 
or observed. Haptic design tool-kits could leverage RheoMap to 
provide a profile to assist users in rapidly testing and tuning haptic 
expression by continually sampling (cycle testing) the viscosity 
of fluid while simultaneously being affected by different levels of 
magnetic stimulation. 

7.4 Limitations 
We are limited by our pump’s power, preventing us from producing 
REP pulses for thicker fluids, like those used in cement and clay 
3D printing. The current air pump shows power deficits, especially 
with larger tubes, resulting in noisy and unreliable pressure data. 
The system currently works only with small, predefined tubes and 
cannot operate with a check valve, which is crucial to prevent 
materials from entering the pump and electrical components. How-
ever, hydrophobic check valves, commonly used in medical devices, 
could provide a solution by venting gases while preventing liquid 
passage. 

Our sensing method can sense material concentrations but is 
currently restricted to material versus water. Future improvements 
may include exploring alternative components, varying air tube 
dimensions, and regular calibration. Maintaining system robustness 
while protecting electronic components without affecting the REP 
signal remains a challenge. One possible way to minimize electri-
cal components is by replacing the pneumatic pump with manual 
air controls, such as a syringe, to create a nearly passive system. 
Further enhancing durability may require integrating waterproof 
air pressure sensors or improving calibration detection. 

8 Conclusion 
RheoMap has demonstrated significant potential mapping and nav-
igating a diverse range of fluid materials such as inks, gels, pastes 
and slurries in rheological embedded latent space. Leveraging a 
retraction-extrusion pulse approach with off-the-shelf pneumatic 
systems, our system minimizes material consumption and allows 
for quick-repeatable cycle testing. However, dealing with complex 
materials or substances with close similarities presents challenges. 
To address these, advancements in hardware and sensing routines 
are crucial, particularly in scenarios involving intricate microstruc-
tures and heterogeneous materials. RheoMap’s ability to navigating 
between unique fluid types: inks, gels, pastes and slurries, as well as 
tracking fluid’s concentration, time-shifting and extrudability. This 
properties has good implications for its practical use in many ar-
eas for monitoring and controlling, especially in digital fabrication 
and interaction design. By releasing RheoMap as an open-source 

system, we aim to be as support tutorial tool-kits that allow access 
complex fluid materials and reveal materials literacy. 
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